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Introduction
Normalization is the process of adjusting raw microarray data to 
remove systematic variation of non-biological origin. BeadStudio 
software offers three algorithms for normalizing data generated from 
Illumina Gene Expression BeadChips and panel sets. 

There are three major assumptions when normalizing microarray data. 

1.	 The effect of any systematic error will be uniform over the 
spatial distribution of bead types.

2.	 The majority of genes will not be differentially expressed. 

3.	 Normalization should remove systematic variation while     
leaving biological variation intact.

Scatter plots, box plots, and cluster analysis are all reliable methods 
for evaluating the overall consistency and quality of the data. Scatter 
plots are X versus Y plots comparing intensity values for two arrays. 
In general, scatter plots of signal intensities from similar tissues or 
replicates will display a symmetrical distribution of data points about 
the identity (45º) line. Because some experiments such as time-point 
or drug response experiments may generate asymmetrical distribu-
tions, the investigator must consider the data in the context of the 
study design.  

Displaying scatter plots in log space usually improves the visualiza-
tion of raw data, but it should be noted that log transformation can 
add artifacts such as curvature, increased variation for low signals, or 
changes in correlation among arrays. Therefore, researchers must  
take care not to confuse actual data features with artifacts introduced 
by log transformation. Note that in BeadStudio normalization and 
statistical computations are performed in linear space. 

There are three key features to examine in scatter plots of sample 
data: 

1.	 symmetry of the distribution about the identity line

2.	 agreement between best fit line and identity line

3.	 presence of nonlinear behavior between samples. 

The investigator is looking for trends in the data such as signal satura-
tion, distributions that do not follow the identity line, curvature, diver-
gent scatter, extremely dispersed scatter, offset scatter, and outlier 
gene clusters.

Two other powerful data evaluation tools are box plots and cluster 
analysis. Box plots provide a quick evaluation of the magnitude and 
variability of signals within and between arrays and enable easy detec-
tion of outliers. Cluster analysis is a useful method for determining 
if non-biological variation is present in the data. Such variation may 
correlate with the day of experiment, total RNA preparation date, chip 

variability, scan order, and the day of mRNA processing. For data 
quality evaluation, clustering by correlation is most appropriate. 

Although BeadStudio algorithms are intended to remove systematic, 
non-biological variation, they cannot correct data of inferior quality 
such as data derived from degraded mRNA or compensate for poor 
experimental design (e.g., confounding biological variation with  
systematic variation). 

BeadStudio Algorithms
BeadStudio software offers three normalization algorithms—average 
normalization, rank invariant normalization, and cubic spline normaliza-
tion—each with specific advantages for normalizing microarray data. 
While average normalization is recommended in most circumstances, 
the other algorithms may be better suited for certain situations which 
are discussed later in this document. 

Before the researcher applies an algorithm to the raw data, a refer-
ence group must be defined. A reference group can consist of one 
or more arrays. The default reference group is the first array or group 
in the list, but any array or group can be specified as the reference. 
The reference group is used to calculate a virtual array. A virtual array 
comprises the average values from all the arrays in the reference group 
and is used to determine normalization parameters. Once the refer-
ence group is defined for normalization, the same group is used as the 
reference group during differential expression analysis. 

Average Normalization

Average normalization is used to rescale intensities across multiple 
arrays and chips. This algorithm is an appropriate choice for experi-
ments that employ a large number of arrays with differences in overall 
intensity. For average normalization, a scaling factor, Si, is calculated 
by dividing the average intensity of the virtual array (μv) by the average 
intensity for all arrays in a group (μi). 

 
Si = μv / μi

	
 

The bead-type intensities of all arrays in the experiment are normalized 
by Si. 

 
Ipi(norm) = IpiSi 	

Each probe is indexed by p and the number of probes ranges from 
1 to n. Each array is indexed by i and the number of arrays ranges 

from 1 to m. 

BeadStudio Normalization Algorithms for Gene  
Expression Data
A mathematical and empirical discussion of BeadStudio normalization algorithms. 
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Rank Invariant Normalization

Rank invariant normalization is an appropriate selection if the inves-
tigator can assume that a reasonable percentage of the genes in an 
experiment are not differentially expressed (i.e., rank invariant).  

For rank invariant normalization, a subset of probes whose rank does 
not change across the experiment are identified and serve to define 
the normalization parameters. To determine if a gene is rank invariant, 
the intensities from the low rank (50th percentile) and the high rank  
(90th percentile) are considered to be rank invariant if the absolute 
value of the change in relative rank (r) between the gth gene in the ith 
sample and the gth gene in the virtual sample is less than 0.05. Here 
rgv is the rank of gene g in the virtual array v and rgi is the rank of gene 
g in array i. 

 
|rgi - rgv | < 0.05

	 rgv 

Let i (1,2,3...m) enumerate all samples used in the experiment. Then 
for array i, normalization coefficients (ai,bi) can be computed using an 
iteratively reweighted least squares fit. 

 
yv = ai yi + bi

Here yv and yi are intensity vectors of probes corresponding to the 
rank invariant set of probes on virtual array v and i, respectively. The 
Tukey bisquare weight function with the tuning constant set at 4.685 
provides 95% efficiency when errors are normally distributed while 
maintaining protection against outliers. The standard deviation of er-
rors is estimated using the median absolute deviation. 

The rank invariant normalization algorithm normalizes intensities and 
subtracts background through the following equation. 

 
yi 

new = yi - bi

	 ai

	

Rank invariant normalization is more robust to outliers than the 
average normalization method. However, if it is known that a large 
percentage of the genes in an experiment may be differentially 

expressed, or that there is a large difference in intensity among arrays, 
the user should consider cubic spline normalization. 

Cubic Spline Normalization

Cubic spline normalization is implemented to remove curvatures ob-
served in scatter plots that arise from nonlinear relationships between 
samples or groups of samples when plotted in log space. This method 
initially divides the intensity distribution into a group of quantiles 
consisting of a similar number of gene intensities. Quantiles (q) are 
determined by letting 

qi = (i - 0.5)

     N  
where i equals array 1,2,3,...m and N is equal to total number of quantiles. 

By letting qi be a vector of N quantiles, then 

 
N = max(15, Nprobes )

	 100

where Nprobes is the number of probes represented on a sample array. 
Using the scaling factor, the intensities from the sample array in a given 
quantile are adjusted to match the intensities from the virtual array. For 
two samples to be normalized to each other, cubic spline normaliza-
tion scales the kth quantile of the sample array such that it is equal to 
the kth quantile of the virtual array. This scaling is repeated for each 
quantile. Genes with values that lie between quantiles are adjusted 
by interpolation of the neighboring quantiles. While this normalization 
is meant to address nonlinear relationships between samples in log 
space, it can also be used as a general normalization method. 

Normalization of titration Data Sets in  
BeadStudio
For the purpose of demonstrating the results of normalization using 
the three algorithms available in BeadStudio, Illumina scientists ana-
lyzed two titration data sets. The first titration experiment profiled five 
input concentrations of human total RNA and shows the effects of nor-
malization on data with nonlinear characteristics. The second titration 
data set provides a biologically relevant example of the stability of high 
quality data to BeadStudio normalization algorithms using four 

      Figure 1: Effect of Average, Rank Invariant, and Cubic Spline Normalization On Nonlinear Data 
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MAQC1 samples: 100% Brain total RNA, 100% Universal RNA from 
Stratagene, 25% Universal-75% Brain, and 75% Universal-25% Brain. 

Total RNA Titration Data
For the human total RNA titration experiment, five cRNA samples 
were hybridized on a single Human-6v1 BeadChip. The five samples 
were placed on arrays A (highest concentration) through E (lowest 
concentration). The box plots for the average signal intensities for all 
the arrays show that the intensities diminish from array A to array E 
(Figure 1). Although both average normalization and rank invariant 
normalization scale the data, average normalization scales all the ar-
rays tighter around the mean of the arrays. Cubic spline normalization 
rescales all arrays so that the means are equal. 

A log scatter plot displaying the intensity signals from array A versus 
array B demonstrates the nonlinear relationship of the raw data and 
reveals a significant curvature in the data set. Additionally, the raw data 
set is displaced from the identity line, and the best fit line is offset and 
skewed from the identity line. (Figure 2). When adjusting nonlinear 

data, cubic spline normalization achieves the greatest improvement in 
symmetry, and the best agreement between the identity and best fit line. 

MAQC Titration Data
The MAQC data were analyzed to demonstrate the results of Bead-
Studio normalization on biologically relevant samples. The samples 
were assayed on four Human-6v1 BeadChips. In practice, when the 
data are of high quality, different normalization methods do not result in 
drastically different analysis outcomes. The robustness of high-quality 
data is illustrated with box plots, scatter plots, clustering, and differen-
tial gene expression analysis of the MAQC sample profiles (Figures 3, 
4, and 5, and Table 1). The box plots show considerable similarity 
between average normalization and cubic spline normalization in terms 
of scaling the median and generating a unifrom interquartile range. In 
comparison, a larger degree of variability remains after rank invariant 
normalization. Scatter plots of the MAQC data also reveal only minor 
differences in the results of the three normalization algorithms, with 

       Figure 2:  Effect of Average, Rank Invariant, and Cubic Spline Normalization on Nonlinear Data  
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Cubic Spline Normalization
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The data were filtered by the detection p-value < 0.01. The identity line and two-fold boundaries are denoted in red. The best fit line is blue. 
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      Figure 3: Effect of Average, Rank Invariant, and Cubic Spline Normalization on High-Quality Data
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Scale differs from raw to normalized data because normalized data were filtered by detection p-value < 0.05. 

       Figure 4: Effect of Average, Rank Invariant, and Cubic Spline Normalization on High-Quality Data  
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Rank Invariant Normalization
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Cubic Spline Normalization
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The data were filtered by the detection p-value < 0.01. The identity line and two-fold boundaries are denoted in red. The best fit line is blue. 
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average and cubic spline normalization showing the closest similarity 
in performance (Figure 4). 

Hierarchical clustering shows that the four MAQC sample groups 
partition distinctly according to biological variation and do not show 
appreciable differences with regard to composition and correlation 
as a function of normalization (Figure 5). The cluster consisting of the 
universal total RNA samples shows the highest variability in sample 
order. However, the correlation within this group is extremely tight and 

Raw Data Average Normalization

Rank Invariant Normalization Cubic Spline Normalization

       Figure 5: BeadStudio Dendrograms of MAQC Samples Before and After Normalization  

     

small differences in correlation results within a rearrangement of the 
samples in this cluster.

Finally, differential analyses were conducted between the MAQC pure 
brain and universal RNA groups to determine the impact of apply-
ing different normalizations. The Illumina Custom error model with 
false discovery rate (FDR) correction was applied to data sets after 
normalizing by each algorithm separately. The resulting lists of genes 
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      Table 1: Analysis of BeadStudio Normalization on Pure Brain and Pure Universal MAQC Titration Samples 

Normalization  
Algorithm

Number of Differentially  
Expressed Genes (p < 0.001)

 Analysis % Overlap in the  
number of genes

Average 12,489 Average versus Rank Invariant 88%

Rank Invariant 12,720 Rank Invariant versus Cubic Spline 92%

Cubic Spline 12,671 Cubic Spline versus Average 96%

were analyzed to determine the extent of overlap among the various 
normalizations (Table 1). Overall, there is considerable overlap among 
gene lists, illustrating that conclusions drawn from differential expres-
sion analysis using high-quality data should not change drastically as a 
function of normalization. 

Conclusion

The results of these analyses indicate that average normalization and 
cubic spline normalization algorithms perform most similarly when the 
data are of high quality. Further, rank invariant normalization seems to  
be more conservative with regard to the magnitude of the adjust-
ment it makes to the data. When the data are of high quality, different 
normalizations will likely not lead to large differences in the results of 
statistical analysis, class discovery, or class prediction methods. In 
general, Illumina recommends using average normalization; however, 
when there are nonlinear associations among arrays, cubic spline 
normalization is a more appropriate choice.
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