A Patient Counseling Guide for Reproductive Genetics
Table of contents

Genetics overview 04
Chromosomal conditions 14
Prenatal screening and diagnostic options 38
Rare autosomal trisomies 54
Single gene inheritance 64
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetics overview</td>
<td>04</td>
</tr>
<tr>
<td>Chromosomal conditions</td>
<td>14</td>
</tr>
<tr>
<td>Prenatal screening and diagnostic options</td>
<td>38</td>
</tr>
<tr>
<td>Rare autosomal trisomies</td>
<td>54</td>
</tr>
<tr>
<td>Single gene inheritance</td>
<td>64</td>
</tr>
</tbody>
</table>

This Counseling Guide is intended to offer health care providers basic information on genetic counseling and is for general educational purposes only. The guide is not intended to be used as a substitute for the health care provider’s professional judgment in providing medical advice or services.
Genetics overview
Genetics overview
Cells, chromosomes, and DNA

- Human
- Cell
- Nucleus
- Chromosome
- DNA
- Base pairs (A, T, G, C)
Cells, chromosomes, and DNA

- The human body is made up of trillions of cells
- Inside the nucleus of cells are structures called chromosomes. Chromosomes are made up of DNA
- DNA is made up of 4 bases (A,T,G,C). They are the building blocks of genes
 - A distinct sequence of these bases make up a gene. Humans have about 20,000 genes

Human chromosomes

1. From mother (egg)
2. From father (sperm)

1-12: Standard chromosomes
13-22: Additional chromosomes
19-20: X chromosomes
21-22: Y chromosomes

XX or XY
• Humans have 23 pairs of chromosomes (for a total of 46 chromosomes)
 o One copy of each chromosome comes from the mother (egg); the other copy comes from the father (sperm)
• The first 22 pairs are called autosomes, and they are same in males and females
• The 23rd pair of chromosomes is called sex chromosomes. Females have two copies of the X chromosome and males have one X and one Y chromosome
Meiosis: Sperm and egg cell production

Primary germ cell → Chromosomes copied

First meiosis

Second meiosis

Gametes (sperm/egg)
Meiosis is the process in which sperm and egg cells (gametes) are produced.

During meiosis, chromosome pairs are separated so that each gamete typically has one copy of each chromosome (23 total, half the number of chromosomes found in a cell).

At fertilization/conception, the sperm joins with the egg to form a zygote, which becomes an embryo (with 46 chromosomes).
Nondisjunction in meiosis

Diagram showing the process of meiosis and nondisjunction leading to trisomy and monosomy.

- Sperm
- Typical meiosis
- Fertilization
- Nondisjunction
- Eggs
- Trisomy
- Monosomy

Legend:
- Males
- Females
- Sperm
- Eggs
- Trisomy
- Monosomy
Nondisjunction in meiosis

- Nondisjunction is the failure of homologous chromosomes to separate normally during cell division, leading to an incorrect number of chromosomes (known as aneuploidy)
 - Nondisjunction can occur in female and male meiosis
- Types of aneuploidy:
 - Trisomy: three copies of a specific chromosome
 - Monosomy: one copy of a specific chromosome
- Aneuploidy can lead to:
 - Failure of an embryo to implant
 - Pregnancy loss/miscarriage
 - Birth of a baby with a chromosome condition (e.g., trisomy 21, also known as Down syndrome)

Chromosomal conditions
Chromosomal conditions
Trisomy 21 (Down syndrome)

From mother (egg)
From father (sperm)
Trisomy 21 (Down syndrome)

- Trisomy 21 is the most common chromosomal condition in live born infants
- Trisomy 21 occurs in approximately 1 in every 660 live births
- Clinical presentation is variable. Common characteristics of trisomy 21 include:
 - Mild to moderate intellectual disability and developmental delay
 - Characteristic facial features
 - Structural heart anomalies
 - Low or poor muscle tone
 - Can live to adulthood

Trisomy 18 (Edwards syndrome)

18 from mother (egg)
18 from father (sperm)

From mother (egg)

From father (sperm)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
XX
XY

or
Trisomy 18 (Edwards syndrome)

- Trisomy 18 occurs in approximately 1 in every 3,333 live born infants
- Life expectancy is usually less than one year
- Clinical presentation is variable. Common characteristics of trisomy 18:
 - Intrauterine growth retardation
 - Increased muscle tone
 - Unusual positioning of the hands and/or feet
 - Heart and other organ anomalies
 - Severe developmental delay and intellectual disabilities

Trisomy 13 (Patau syndrome)

1 2 3
4 5
6 7 8 9 10
11 12
13
14 15
16
17
18
19 20
21 22
XX XY

From mother (egg)
From father (sperm)
• Trisomy 13 occurs in approximately 1 in every 5,000 live born infants
• Life expectancy is usually less than 1 year
• Clinical presentation is variable. Common characteristics of trisomy 13 include:
 o Heart, brain, kidney abnormalities
 o Incomplete fusion of the lip and/or palate (clefting)
 o Severe developmental and intellectual disabilities

From mother (egg)
From father (sperm)
Monosomy X (Turner syndrome)
Monosomy X (Turner syndrome)

- Monosomy X occurs in approximately 1 in every 2,000 female live born infants
 - Many pregnancies with monosomy X end in miscarriage
- Clinical presentation is variable. Common characteristics of monosomy X include:
 - Structural heart anomalies
 - Short stature
 - Primary dysfunction of ovaries leading to primary amenorrhoea and infertility

47,XXX (Triple X syndrome)

<table>
<thead>
<tr>
<th>Chromosome</th>
<th>From mother (egg)</th>
<th>From father (sperm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XXX</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
47,XXX (Triple X syndrome)

- 47,XXX occurs in approximately 1 in every 1,000 female live born infants
- Many females with 47,XXX do not have any visible characteristics
- Clinical presentation is variable. Common characteristics of Triple X syndrome include:
 - Taller than average height
 - Learning difficulties, speech, and language delays
 - Delayed development of motor skills
 - Behavioral and emotional difficulties
 - Normal fertility and sexual development

47,XXY (Klinefelter syndrome)

- From mother (egg)
- From father (sperm)

1-18: Normal chromosomes
19-20: Duplicated chromosome 21
21-22: Duplicated chromosome 22

XXY: Extra X chromosome
47,XXY (Klinefelter syndrome)

- 47,XXY occurs in approximately 1 in every 500 male live born infants
- Clinical presentation is variable. Common characteristics of Klinefelter syndrome include:
 - Learning difficulties, speech and language delays
 - Taller than average height
 - Underdeveloped testes
 - Infertility

47,XXY (Jacobs syndrome)

From mother (egg)
From father (sperm)
47,XYY (Jacobs syndrome)

- 47,XYY occurs in approximately 1 in every 840 male live born infants.
- Clinical presentation is variable. Common characteristics of Jacobs syndrome include:
 - Learning difficulties, speech and language delays.
 - Increased risk of hyperactivity and attention problems and occasionally autism spectrum disorder.
 - Normal fertility.

Chromosome deletions and microdeletions

Normal

Deletion

Microdeletion

p arm

q arm

p arm

q arm

p arm

q arm

p arm

q arm
• Deletions and microdeletions are caused by missing pieces of chromosome material
 o Microdeletions are typically too small to be seen on conventional karyotype analysis and need specialized testing for their identification
• Chromosome deletions and microdeletions may result in intellectual and developmental disabilities and congenital anomalies
Chromosome duplications and microduplications

- Normal
- Duplication
- Microduplication

p arm
q arm
p arm
q arm
p arm
q arm
p arm
q arm

Normal
Duplication
Microduplication
Chromosome duplications and microduplications

- Duplications and microduplications are caused by extra pieces of chromosome material
 - Microduplications are typically too small to be seen on conventional karyotype analysis and need specialized testing for their identification
- Chromosome duplications and microduplications may result in intellectual and developmental disabilities and congenital anomalies
Chromosome translocation: Reciprocal

Reciprocal translocation carrier

Possible gametes from carrier parent

Balanced
Unbalanced

Non-carrier parent

Gamete from non-carrier parent

Fertilization

Possible zygotes

Balanced non-carrier
Balanced translocation carrier
Unbalanced complement (partial deletion and duplication)
A reciprocal translocation is the result of two different chromosomes exchanging segments.

Balanced reciprocal translocations are present in approximately 1 in 500 individuals.

Individuals who are balanced reciprocal translocation carriers usually do not have clinical features, but may be at risk for:
- Infertility
- Recurrent pregnancy loss
- Birth of a baby with congenital anomalies, intellectual and developmental disability
Chromosome translocation: Robertsonian

Balanced translocation carrier

Possible gametes from carrier parent

Balanced

Unbalanced

Non-carrier parent

Gamete from non-carrier parent

Balanced non-carrier
Balanced translocation carrier
Trisomy
Monosomy
Unbalanced complement (partial deletion and duplication)

Possible zygotes

Fertilization

Balanced monosomy
Trisomy
Monosomy
Trisomy
Monosomy
Chromosome translocation: Robertsonian

- A Robertsonian translocation occurs when two “Robertsonian” chromosomes (13, 14, 15, 21, 22) join together
- Balanced Robertsonian translocations are present in approximately 1 in every 1,000 individuals
- Individuals who are balanced Robertsonian translocation carriers usually do not have clinical features, but may be at risk for:
 - Infertility
 - Recurrent pregnancy loss
 - Birth of a baby with congenital anomalies, intellectual and developmental disability
Prenatal screening and diagnostic options
Prenatal screening and diagnostic options
Risk of aneuploidy with maternal age

*Midtrimester risk for trisomy 21 (T21), trisomy 18 (T18), Monosomy X (MX)
Risk of aneuploidy with maternal age

- The prevalence of certain chromosome anomalies, like trisomy 21, increases as maternal age increases. This is due to nondisjunction.
- The prevalence of some chromosome anomalies, like Turner syndrome, are not impacted by maternal age.

ACOG PB #163 Clinical Management guideline for Obstetrician-Gynecologist: Screening for fetal aneuploidies May 2016
Prenatal screening and diagnostic options*

- Patient counseled and elects prenatal testing
 - YES: NIPT
 - Offer further counseling and diagnostic testing
 - YES: Serum screening
 - Is the result positive for a chromosomal condition?
 - YES: CIPT
 - Offer counseling and option of NIPT or diagnostic testing
 - NO: Patient and provider to discuss next steps
 - NO: Patient and provider to discuss next steps
 - NO: Patient and provider to discuss next steps

*May differ by country.
Prenatal screening and diagnostic options*

- Prenatal aneuploidy screening assesses a woman’s chance of carrying a pregnancy with certain chromosomal conditions
 - Screening results are not diagnostic. If a screening result is positive, patients should receive further counseling and the option for confirmatory diagnostic testing
- Diagnostic testing can provide more definitive information about:
 - Chromosomal conditions
 - Certain genetic conditions

*Typical in USA but may differ by country.
Noninvasive prenatal testing (NIPT) using cell-free DNA

1. Maternal blood draw and isolation of cell-free DNA (cfDNA)
2. Sequencing of cfDNA
3. Analysis via counting

Unaffected pregnancy

Maternal cfDNA
Fetal (placental) cfDNA

Affected pregnancy

Maternal cfDNA
Fetal (placental) cfDNA

NCCTAGGCGTTTAAACGTAGTAAACCCCTTT
ATACGTAAGTAAACCGGGGATGTTCCCAAGTTCC
GACTTAAAATCGGAATCGATGCCAAAACG
GAATCGGATCCAAACCGGGGATGTTCC

TOC
Genetics overview
Chromosomal conditions
Prenatal screening and diagnostic options
Rare autosomal trisomies
Single gene inheritance
Noninvasive prenatal testing (NIPT) using cell-free DNA

- NIPT can be performed as early as 10 weeks
- A blood sample is drawn from the pregnant woman’s arm. The blood sample contains maternal and placental (fetal) cfDNA
- cfDNA is sequenced and its chromosome origin is determined, then counted to screen for chromosomal conditions
- Benefits:
 o Noninvasive, with no risk of miscarriage
 o High detection rates for conditions tested
 o Very low false positive rates and low false negative rates compared with traditional serum screening
- Limitations:
 o It is not diagnostic; false positives and false negatives can occur
 o In some instances, results may represent a maternal or placental condition, rather than a fetal condition

NIPT: Understanding positive and negative results

- Pregnancy with chromosomal condition (false negative result)
- Pregnancy without chromosomal condition (true negative result)
- Pregnancy with chromosomal condition (true positive result)
- Pregnancy without chromosomal condition (false positive result)

Figures are not to scale

Negative NIPT results

Positive NIPT results
NIPT: Understanding positive and negative results

- Results apply only to conditions tested
- A negative result means fetus has a decreased chance of having a condition
 - In most cases, the condition is truly not present (true negative result)
 - Rarely, the condition may be present (false negative result)
- A positive result means an increased chance of having the condition
 - In most cases, the condition is truly present (true positive result)
 - In some of these, the condition is not present (false positive result)
- Since NIPT is a screening test, results should be taken into context of the overall pregnancy picture and positive results should be confirmed prior to making irreversible pregnancy management decisions
Understanding and comparisons of positive predictive value (e.g. trisomy 21)

Positive predictive value for trisomy 21

Maternal age vs. positive predictive value for trisomy 21

Maternal age:

- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44

Positive predictive value:

- 0%
- 10%
- 20%
- 30%
- 40%
- 50%
- 60%
- 70%
- 80%
- 90%
- 100%

Graph showing the positive predictive value for trisomy 21 across different maternal ages.
Positive predictive value (PPV) refers to the chance that a pregnancy with a positive screen result truly has the condition.

PPV is influenced by the prevalence of the condition and the test performance:
- Higher prevalence results in higher PPV
- A test with higher sensitivity and specificity leads to higher PPV

When PPV is higher, more positive results will be true positive, and less will be false positive.

The PPV of NIPT for trisomy 21 is higher than the PPV of serum screening for trisomy 21, regardless of the maternal age.

Diagnostic testing: Chorionic villus sampling (CVS)

Transcervical CVS

Transabdominal CVS
Diagnostic testing: Chorionic villus sampling (CVS)

- Can determine, with as much certainty as is possible, whether a chromosomal condition is present
 - Additional genetic testing can be performed, if indicated
- Involves testing of cells collected from the placental villi
 - Typically performed between 11 and 14 weeks of pregnancy
- Has risk of complications including miscarriage
Diagnostic testing: Amniocentesis

- Ultrasound probe
- Uterine wall
- Amniotic fluid
Diagnostic testing: Amniocentesis

- Can determine, with as much certainty as is possible, whether a chromosomal condition is present
 - Additional genetic testing can be performed, if indicated
- Involves testing of fetal cells collected from fluid surrounding the fetus (amniotic fluid)
 - Typically performed between 15 and 20 weeks of pregnancy
 - Can be performed after 20 weeks, if indicated
- Has risk of complications, including amniotic fluid leakage and miscarriage
Rare autosomal trisomies
Rare autosomal trisomies
Rare autosomal trisomies (e.g. trisomy 16)

From mother (egg)
From father (sperm)
Rare autosomal trisomies (e.g. trisomy 16)

- Trisomy involving a chromosome other than 21, 18, 13, X or Y is referred to as rare autosomal trisomy
- Prevalence of rare autosomal trisomy in NIPT is 0.28-0.78%
- Clinical presentation varies and is dependent on the chromosome involved. These can include:
 - Pregnancy loss
 - Fetal demise and stillbirth
 - Confined placental mosaicism with resulting intrauterine growth restriction and uniparental disomy-related disorders
 - Intellectual and developmental disabilities and birth defects
 - In some cases, clinical phenotype may be normal

Potential clinical outcome of rare autosomal trisomy identified by noninvasive prenatal testing (NIPT)

- Some will result in pregnancy loss
- Some will result in chromosomal anomaly in fetus
- Some will have confined placental mosaicism
- Some will have normal outcome

NIPT positive result for rare autosomal trisomies
Potential clinical outcome of rare autosomal trisomy identified by noninvasive prenatal testing (NIPT)

- Clinical presentation after a positive NIPT result is variable, and is chromosome dependent
 - Certain chromosomal anomalies can cause pregnancy loss
 - Certain chromosomal anomalies can result in live birth with a phenotype associated with the detected chromosome anomaly
 - Certain chromosome anomalies result in confined placental mosaicism (CPM)
 - CPM can be associated with an increased risk for altered placental function, leading to intrauterine growth restriction, fetal demise and risk for uniparental disomy
 - Some cases will have no apparent clinical findings
 - False positive results can also occur
- NIPT is a screening test. Results should be confirmed by diagnostic testing (for example, CVS or amniocentesis) prior to making any pregnancy management decisions

Types of chromosomal mosaicism

- Normal cells
- Chromosomally abnormal cells

Generalized mosaicism
Confined placental mosaicism
Fetal mosaicism
Types of chromosomal mosaicism

- **Generalized mosaicism**: presence of two or more chromosomally different cell lines in both the placenta and the fetus.
 - Can lead to a false negative NIPT result

- **Confined placental mosaicism**: presence of two or more chromosomally different cell lines in the placenta, but not the fetus.
 - Can lead to a false positive NIPT result

- **Fetal mosaicism**: presence of two or more chromosomally different cell lines that are present in the fetus, but not the placenta.
 - Can lead to a false negative NIPT result

Generalized mosaicism

Confined placental mosaicism

Fetal mosaicism

Uniparental parental disomy (UPD) due to trisomic rescue

Meiosis

Nondisjunction

Nondisjunction

Normal

Normal

Normal

Normal

Trisomy

Fertilization

Rescue

Outcome

Uniparental disomy
Uniparental parental disomy (UPD) due to trisomic rescue

- UPD refers to having two copies of a particular chromosome from the same parent, instead of one from each parent
 - In case of confined placental mosaicism, UPD predominantly occurs due to trisomic rescue
 - ACMG recommends UPD testing for imprinted chromosomes (6,7,11,14,15,20); clinical practice may vary
 - Additional specialized testing is required for diagnosing UPD
 - Clinical presentation is variable. UPD of certain imprinted chromosomes can cause intellectual disability and other genetic conditions

- Positive cfDNA screening for certain autosomal trisomies is associated with an increased risk of confined placental mosaicism, resulting in increased risk of uniparental disomy (UPD)

Single gene inheritance
Single gene inheritance
Autosomal dominant inheritance

Parents

Has the condition

Does not have the condition

Children

Have the condition (50%)

Do not have the condition (50%)
Autosomal dominant inheritance

- With autosomal dominant inheritance, only one copy of an altered allele is necessary for the condition to be present.
- An affected parent has the following reproductive risks with each pregnancy:
 - 50% chance to have a child affected with the condition.
 - 50% chance to have a child without the condition (unaffected).
 - Males and females are at equal risk.

Autosomal recessive inheritance

Parents

![Diagram of autosomal recessive inheritance showing gene alterations and probability of conditions in children.](image)

Children

- *Has the condition (25%)*
- *Do not have the condition, carrier (50%)*
- *Does not have the condition, non-carrier (25%)*
Autosomal recessive inheritance

- With autosomal recessive inheritance, two copies of the altered allele are necessary for the condition to be present.
- Individuals with only one copy of the altered allele are called carriers and are typically unaffected.
- If both parents are carriers of the same condition, they have the following reproductive risks with each pregnancy:
 - 25% chance to have a child with the condition (affected).
 - 50% chance to have a child who does not have the condition (unaffected) and is a carrier of the condition.
 - 25% chance to have a child without the condition (unaffected) and a non-carrier.
 - Males and females are at equal risk.

X-linked recessive inheritance

Parents

<table>
<thead>
<tr>
<th>Mother</th>
<th>Father</th>
</tr>
</thead>
<tbody>
<tr>
<td>X X</td>
<td>X Y</td>
</tr>
<tr>
<td>Does not have the condition, non-carrier</td>
<td>Does not have the condition, carrier</td>
</tr>
</tbody>
</table>

Children

<table>
<thead>
<tr>
<th>Son</th>
<th>Daughter</th>
</tr>
</thead>
<tbody>
<tr>
<td>X Y</td>
<td>X X</td>
</tr>
<tr>
<td>Has the condition (25%)</td>
<td>Does not have the condition, non-carrier (25%)</td>
</tr>
<tr>
<td>X X</td>
<td>X X</td>
</tr>
<tr>
<td>Does not have the condition, carrier (25%)</td>
<td>Does not have the condition, non-carrier (25%)</td>
</tr>
</tbody>
</table>
X-linked recessive inheritance

- X-linked recessive inheritance involves an altered allele that occurs on the X chromosome.
- Males with an altered allele on their X chromosome will have the condition (affected).
- Females with a gene variant on one of their two X chromosomes are called carriers of the condition.
 - Female carriers are typically unaffected; however, some may display some characteristics of the condition.
- Carrier females have the following reproductive risk with each pregnancy:
 - 25% chance of a male with the condition (affected).
 - 25% chance of a carrier female without the condition (unaffected).
 - 25% chance of a male without the condition (unaffected).
 - 25% chance of a non-carrier female without the condition (unaffected).

This Counseling Guide is intended to offer health care providers basic information on genetic counseling and is for general educational purposes only. The guide is not intended to be used as a substitute for the health care provider's professional judgment in providing medical advice or services.

© 2018 Illumina, Inc. All rights reserved. PUB 1576-2016-031 QB 6258