Viral Detection and Research
A review of publications featuring Illumina® Technology
TABLE OF CONTENTS

Introduction ... 3
DNA Viruses .. 6
RNA Viruses .. 7
Virus mRNA ... 9
Virus Small RNAs (miRNAs) and Host-Pathogen Interactions ... 11
Human Virome .. 14
Human Viral Pathogens .. 15
Animal Viruses .. 17
Plant Viral Pathogens ... 19
Insect Viral Pathogens .. 21
Bacteriophages .. 22
Vaccines ... 25
Symbiosis ... 26
Glossary of Terms and Abbreviations ... 27
Bibliography .. 28
INTRODUCTION

Next-generation sequencing has developed into a powerful tool that can be used to detect, identify and quantify novel viruses in one step\(^1\). It is proving to be a sensitive method for detecting putative infectious agents associated with human tissues and viral transcripts can be detected at frequencies lower than 1 in 1,000,000\(^2\). One of the fortunate consequences of deep sequencing is the coincidental sequencing of viral DNA or RNA, which has led to the discovery of an increasing number of new viruses\(^3\). This comes at a time when the globalization of travel and trade, as well as climate change and its effects on vector distribution, are facilitating the emergence and reemergence of zoonoses\(^4\).

Reviews

Examples of Viral Pathogens Identified Using Illumina Technology

<table>
<thead>
<tr>
<th>Name</th>
<th>Technology</th>
<th>Disease Association</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009 pandemic influenza A(H1N1)</td>
<td>Genome Analyzer<sub>IIx</sub></td>
<td>Febrile illness</td>
<td></td>
</tr>
<tr>
<td>TMAV (titi monkey adenovirus)</td>
<td>Genome Analyzer<sub>IIx</sub>, 73 bp paired-end reads</td>
<td>Pneumonia (titi monkeys)</td>
<td></td>
</tr>
<tr>
<td>BASV (Bas-Congo virus), a rhabdovirus</td>
<td>HiSeq 2000</td>
<td>Acute hemorrhagic fever</td>
<td></td>
</tr>
<tr>
<td>MWPyV/HPy10/MXPyV (MW polyomavirus)</td>
<td>HiSeq 2000 75 bp paired-end reads</td>
<td>Diarrhea</td>
<td></td>
</tr>
<tr>
<td>HPyV9 (human polyomavirus 9)</td>
<td>HiSeq 2000 100 bp paired-end reads</td>
<td>Diarrhea</td>
<td></td>
</tr>
<tr>
<td>Human enterovirus 109</td>
<td>Genome Analyzer<sub>II</sub></td>
<td>Acute respiratory illness</td>
<td></td>
</tr>
<tr>
<td>TDAV (Thelie’s disease-associated virus), a novel pegivirus</td>
<td>HiSeq 2000 100 bp paired-end reads</td>
<td>Hepatitis (horses)</td>
<td></td>
</tr>
<tr>
<td>Canine bocavirus 3</td>
<td>MiSeq</td>
<td>Hemorrhagic diarrhea and vasculitis (dog)</td>
<td></td>
</tr>
<tr>
<td>Snake arenaviruses</td>
<td>HiSeq 100 bp paired-end reads</td>
<td>Inclusion body disease (snakes)</td>
<td></td>
</tr>
<tr>
<td>SAADV-C (simian adenovirus C)</td>
<td>HiSeq 2000 100 bp paired-end reads</td>
<td>Pneumonia (baboons)</td>
<td></td>
</tr>
<tr>
<td>Chiropteran poxvirus and a novel adenovirus</td>
<td>Genome Analyzer<sub>II</sub>, for 76bp paired-end reads</td>
<td>Asymptomatic carriers (bats)</td>
<td></td>
</tr>
<tr>
<td>A novel nidovirus, most closely related to the Arteriviridae</td>
<td>Genome Analyzer<sub>IIx</sub></td>
<td>Fatal neurological disease (Australian possum)</td>
<td></td>
</tr>
<tr>
<td>Novel hepacivirus, guereza hepacivirus</td>
<td>MiSeq with Nextera DNA sample preparation kit</td>
<td>Asymptomatic carriers, black-and-white colobus (Colobus guereza)</td>
<td></td>
</tr>
<tr>
<td>A novel gamma-2 herpesvirus</td>
<td>Genome Analyzer<sub>IIx</sub></td>
<td>Spontaneous Inflammatory Demyelinating Disease (Japanese macaque)</td>
<td></td>
</tr>
</tbody>
</table>

Emerging viruses—such as SARS coronavirus, hantaviruses and henipaviruses—have wildlife reservoirs. To investigate the virus load on a bat species living close to human habitat, the authors isolated and sequenced virus DNA from *Eidolon helvum*. A great abundance and diversity of novel viruses were found, including novel herpes and papillomaviruses and a novel chiropteran poxvirus. The display of a variety of mammalian viruses makes the bat species a potential reservoir of viruses that may be a public health threat. This study demonstrates the ability of next-generation sequencing to detect novel viruses.

Illumina technology: Genome Analyzer II for 76 bp paired-end reads

The authors demonstrate that they can robustly detect mutations at 0.1% fractional representation. This represents accurate detection of one mutant per every 1,000 wild-type alleles. The method for detecting rare variants compares the baseline error rate from multiple reference replicates to the sample error rate at each position. To demonstrate the utility of the method, they analyzed nine clinical samples of H1N1 influenza A and detected an oseltamivir (antiviral therapy) resistance mutation in the H1N1 neuraminidase gene in 0.18% of the samples.

Illumina Technology: Genome Analyzer IIx

Total hepatitis B virus (HBV) DNA from 395 patients treated with single or multiple antibiotics was sequenced using the HiSeq2000 sequencer. The experiment was repeated three times and the results demonstrated the high reproducibility of the HiSeq platform. The results were also validated using PCR sequencing. The authors conclude the HiSeq system has high sensitivity, high fidelity, high throughput and automation, making it a useful method for HBV testing and genotyping.

Illumina Technology: HiSeq 2000

This study presents a sequencing assay for the reliable identification of viruses in plasma. The protocol enriches viral particles from plasma filtrates with subsequent creation of RNA and DNA libraries for sequencing. The assay was tested using plasma from patients with chronic hepatitis B, chronic hepatitis C and autoimmune hepatitis. Patients without liver disease constituted the control group. Hepatitis viruses were readily detected at high coverage in hepatitis patients, and only a limited number of sequences resembling other viruses were found.

Illumina Technology: Genome Analyzer IIx

DNA VIRUSES

Routine sequencing of DNA viruses has produced a large number of viral genomes that highlight the remarkable variability of viruses. The differences between the genomes of laboratory strains and clinical isolates of the same virus can be substantial, underscoring the need to routinely sequence clinical isolates.21

References

Sequencing provides a sensitive and highly informative diagnostic tool for analyzing outbreaks of infectious diseases. In 1997 captive baboons at a research facility in Texas suffered an outbreak of acute respiratory illness. Using clinical samples from one sick baboon and three asymptomatic baboons, whole-genome-sequencing revealed a novel adenovirus species. The specificity and resolution of Illumina sequencing allowed the tracing of viral origins to a recombinant, nonpathogenic viral strain and another unknown adenovirus. This comprehensive study includes a comparison of adenovirus known from other vertebrate hosts, including human.

Illumina technology: HiSeq 2000 for 100 bp paired-end sequencing

This study uses next-generation sequencing to investigate viral infection in 44 head and neck tumor types from formalin-fixed paraffin-embedded (FFPE) samples. The authors were able to detect human papillomavirus (HPV) subtypes that would not have been detected by traditional methods. They then used eight cell lines to show that this approach could be applied to various tumors and viruses.

Illumina technology: Genome Analyzer with 76 bp reads

RNA VIRUSES

The high mutation rate in RNA viruses arises from error-prone polymerases and limited RNA proofreading functions\(^\text{22}\). This low replication fidelity results in RNA virus populations that have been described as quasispecies: a cloud, or assemblage, of wild-type (WT) and mutant genomes that exist at a mutation-selection equilibrium\(^\text{23}\). Recent studies have shown that virus diversity is essential for adaptive evolution and the capacity to cause disease\(^\text{24}\).

References

This study describes the complete sequences of the Obodhiang virus (OBOV) and Kotonkan virus (KOTV) genomes. Genetic and serological data indicate that KOTV and OBOV should be classified as new species in the genus Ephemerovirus. This is an example of using sequencing to identify a new RNA virus species.

Illumina Technology: Genome Analyzer with 75 bp paired-end reads

This study applied RNA sequencing to identify a previously unknown Flaviviridae virus causing equine serum hepatitis. The authors named the virus "Theiler’s disease-associated virus" (TDAV). In the outbreak studied, TDAV was detectable in all affected animals, suggesting it to be the causative virus for Theiler’s disease although the authors could not rule out the potential presence of other infectious agents at low levels.

Illumina Technology: HiSeq 2000

RNA sequencing was used to identify a previously unknown Flaviviridae virus causing equine serum hepatitis\(^\text{25}\).

Sequencing of viruses and bacteriophages is usually preceded by production of viral stock or specific purification and amplification to obtain sufficient quantities of genomic material. This study presents a novel method of Sequence-Independent Single Primer Amplification (SiSPA) to allow sequencing from as little as 10 pg of DNA template. Illumina Technology: HiSeq 2000

Active characterization of influenza viruses is essential for better preparation against possible pandemic events. In order to obtain comprehensive characterization of the influenza genome and identify emerging strains, this study applied next-generation-sequencing on Illumina MiSeq for multiplex sequencing of six virus isolates from clinical specimens collected in Thailand and Nepal. The analysis characterized three seasonal influenza A H3N2 strains, one 2009 pandemic influenza H1N1 strain and two influenza B strains. Illumina Technology: MiSeq

Sequencing viral mRNAs can provide a wealth of information about the activity of viruses as well as their mechanisms of action. This information can then be used to annotate the viral genome. Until the advent of next-generation sequencing it was very difficult and laborious to sequence viruses. Lack of knowledge about viral sequence functions represents a large gap in current understanding of microbiological population dynamics.

Review

References

This study presents the discovery of a transcript-specific translation initiation mechanism that is mediated by the ribosome. The mechanism was found through study of vesicular stomatitis virus (VSV), which requires a protein from the large ribosomal subunit (rpl40) for its translation. Using deep sequencing, the authors further uncovered a subset of cellular transcripts that were selectively sensitive to rpl40 depletion, suggesting that this is an endogenous translation pathway.

Illumina technology: Genome Analyzer for mRNA-Seq

Gene localization to specialized nuclear compartments is a mechanism for regulating gene expression. In studying the mechanisms mediating human immunodeficiency virus type 1 (HIV-1) latency, the authors discovered that silenced, but transcriptionally competent, HIV-1 proviruses reside in close proximity to promyelocytic leukemia (PML) protein. PML binds to the latent HIV-1 promoter and inhibits gene expression.

Illumina technology: mRNA-Seq

Despite immunization programs, influenza A viruses are a major cause of morbidity and mortality throughout the world. Several lipid-derived products have presented promising anti-inflammatory functions. In this study the lipid mediator protectin PD1 was studied to identify the anti-inflammatory mechanism. Using RNA sequencing, the authors found that PD1 disrupt the influenza virus replication via the RNA export machinery. This finding suggests that endogenous lipid mediators have potential as anti-inflammatory agents against influenza A infection.

Illumina technology: HiSeq 2000 for RNA-binding proteins (RIP) and RNA-Seq

The brown planthopper is one of the most important pests of rice plants because of the damage it causes to the plant, directly as well as through transmission of the rice ragged stunt virus and rice grassy stunt virus. In this study a previously unknown iflavirus was identified in a laboratory colony of the brown planthopper. The virus and its host were characterized by sequencing, and a test of transmission showed that the virus can be transmitted horizontally.

Illumina technology: HiSeq 2000 for mRNA-Seq

VIRUS SMALL RNAs (MiRNAs) AND HOST-PATHOGEN INTERACTIONS

Small RNAs play a key role in the host-pathogen interaction during virus infections. Micro-RNAs (miRNAs) are a class of small noncoding RNAs involved in post-transcriptional regulation in organisms ranging from plants to higher mammals. Both RNA and DNA viruses use miRNAs for host and viral gene regulation. Viral metagenomics is expanding the current knowledge of virus-host interactions by uncovering genes that manipulate their hosts in unexpected ways.

Review

References

miRNAs play important roles in many biological processes and show differential expression under changing conditions, such as development, immune challenge and stress. This study investigated miRNA expression in the Diamondback moth Plutella xylostella and compared the profile to expression under parasitization by Diadegma semiclausum. Virus-like particles and polydnaviruses (PDVs) were coinjected during oviposition and may play significant roles at various time points after parasitization. Differential expression of host cellular miRNAs in response to parasitism was examined by making small RNA libraries from parasitized and naive larvae of P. xylostella. In the highly expressed miR-281*, the extended dynamic range of RNA-Seq made it possible to identify expression changes that were difficult to see in Northern blots. The identified responsive miRNAs provide insights into the insect immune response to parasitism.

Illumina technology: Genome Analyzer, with the Illumina TruSeq Small RNA Preparation Kit and 36 bp reads

Viral infections can be either transient (possibly lethal to the organism) or persistent. In the latter case, the host immune system controls the virus, but does not eliminate it. This study examines the mechanisms of persistent viral infections by using the Flock horse virus (FHV) infection of Drosophila melanogaster as a model system. Small RNA was sequenced to investigate the role of RNA-mediated interference pathways. The authors found virus-retrotransposon DNA chimeras produced transcripts that were processed by the RNAi machinery, which, in turn, inhibited viral replication.

Illumina technology: HiSeq 2000 for small RNA-Seq and genomic DNA at 54 bp paired-end reads

The transcription machinery of the potato leafroll virus (PLRV) creates subgenomic RNAs (sgRNA) for expression of 3’-proximal genes. Using small RNA (sRNA) sequencing, this study mapped the viral coverage of PLRV-derived sRNAs from virus-infected plants. This is the first sgRNA identified in a virus from the genus Polerovirus further deepening the understanding of the viral genome.

Illumina Technology: Genome AnalyzerIIx

Epstein-Barr virus (EBV) targets quiescent cells and drives them to proliferate. This mechanism expands the pool of virus-infected cells, but it may also make the virus oncogenic. In this RNA sequencing study, miRNAs from EBV were shown to both sustain Burkitts lymphoma in the absence of other viral oncogenes and promote the transformation of primary B lymphocytes.

Illumina technology: Genome AnalyzerIIx for mRNA and RISC-immunoprecipitated mRNA

The question of how HIV-1 interfaces with cellular miRNA biogenesis and effector mechanisms has been highly controversial. In this paper, the authors used deep sequencing of small RNAs in two different infected cell lines and two types of primary human cells to unequivocally demonstrate that HIV-1 does not encode any viral miRNAs.

Illumina technology: HiSeq 2000 for RNA-Seq of RISC-bound miRNAs using TruSeq Small RNA Kit

The human virome is the collection of all viruses that are found in or on humans, including both eukaryotic and prokaryotic viruses. Eukaryotic viruses have an important impact on human health, ranging from mild, self-limited acute or chronic infections to those with serious or fatal consequences. Prokaryotic viruses can also influence human health by affecting the structure and function of bacterial communities that make up the human microbiome.

Reviews

HUMAN VIRAL PATHOGENS

In addition to improving the detection of disease-causing viruses, genomic methods have highlighted the prevalence of viruses in healthy individuals. For example, two groups from the family *Picornaviridae* are common on mucosal surfaces: rhinoviruses and gastrointestinal enteroviruses. In contrast to a “one-pathogen–one-disease” model, a more complex model of the human virome suggests that people are almost continually exposed to viruses, which may, or may not, cause symptoms. In this context the virome is an important component of the environment that can interact with host genetic traits to contribute to the pathogenesis of complex diseases\(^3\)\(^6\).

Reviews

References

Deep sequencing on an illumina HiSeq system was used to discover a novel rhabdovirus (Bas-Congo virus, or BASV) associated with a 2009 outbreak of three human cases of acute hemorrhagic fever in the Democratic Republic of Congo. BASV was detected in an acute serum sample from the lone survivor, and was subsequently de novo assembled using 140 million sequence reads. Antibodies against the virus were found in an asymptomatic nurse caring for one of the three patients, suggesting a potential human-to-human mode of transmission for the virus.

Illumina Technology: HiSeq 2000 for 100 bp paired-end reads

The development of medical countermeasures (MCM) for filoviruses is a high priority for biodefense. In this study, the mutability of the Ebola virus (EBOV) genome was studied in both cell culture and in macaques exposed to a controlled infection. The study concluded that EBOV evolves into genomically different but defined subpopulations depending on whether they are administered to animals or cell culture. This finding has important implications for the use of animal versus cell culture models to study infectious diseases.

Illumina Technology: cBOT and Genome Analyzer\(_{\text{IIX}}\) for 76 bp paired-end reads

This study shows the feasibility of deep sequencing for the detection of occult viral infections in the brains of deceased persons with multiple sclerosis (MS). The deep sequencing analysis in this study was based on the early Illumina Genome Analyzer II technology, and was limited by read length (36 bp) and sequencing from only a single end of the library inserts. The investigators believe that further improvements in sequencing technologies, such as longer reads and perhaps paired-end strategies, will significantly simplify the bioinformatics.

Illumina Technology: Genome Analyzer II

Traditional viral detection methods rely on prior knowledge of sequence or antigens. This study presents sequence-independent viral RNA amplification and subsequent detection using Illumina MiSeq sequencing. The method presented is capable of generating almost full-length viral genomes from clinical samples with low amounts of viral RNA.

Illumina Technology: HiSeq 2000 with 101 bp paired-end reads

Total hepatitis B virus (HBV) DNA from 395 patients treated with single or multiple antibiotics was sequenced using a HiSeq2000 system, and results were validated using PCR sequencing. The experiment was repeated three times and the results demonstrated the high reproducibility of the HiSeq platform. The authors conclude the HiSeq system has high sensitivity, high fidelity, high throughput and automation, making it a favorable method for HBV testing and genotyping.

Illumina Technology: HiSeq 2000

A novel rhabdovirus associated with acute hemorrhagic fever in central Africa. PLoS Pathog 8: e1002924

Attenuated and replication-competent vaccinia virus strains M65 and M101 with distinct biology and immunogenicity as potential vaccine candidates against pathogens. J Virol 87: 6955-6974

Full genome sequence of bluetongue virus serotype 4 from China. J Virol 86: 13122-13123

Discovery of a novel polyomavirus in acute diarrheal samples from children. PLoS ONE 7: e49449

ANIMAL VIRUSES

Viruses are important pathogens of livestock. They cause economically important diseases, such as foot-and-mouth disease and bluetongue. With intensification of trade, livestock are increasingly exposed to viruses that can cause severe animal diseases.

Reviews

References

Bovine tuberculosis (bTB) outbreaks in cattle are costly and detailed understanding of transmission principles are needed to manage this disease. The bTB may be carried both by cattle and by badgers, complicating the analysis of epidemiology. In this study a geographically close sampling of bTB from five herds and samples from four badgers were combined to form a characterization of bTB development and spread. The individual bTB isolates were identified by regions of variable-number tandem repeats (VNTRs) in the *Mycobacterium bovis* genome. Single-nucleotide polymorphisms (SNPs) were found to be consistent for isolates sampled within short geographical distances.

Illumina Technology: Genome AnalyzerIIx for 70 bp paired-end reads

Kimberley virus (KIMV) and Malakal virus (MALV) were first isolated in Australia and Sudan respectively. In this study the two virus genomes were characterized by Illumina sequencing and compared with respect to their genome organization and expression profiles. The high level of amino acid identity and similar expression profiles indicate that KIMV and MALV are geographic variants of the same ephemeroirus.

Illumina Technology: Genome AnalyzerIIx for 101 bp paired-end reads with greater than 1,000-fold coverage

KOTV and OBOV are rhabdoviruses that were isolated from arthropods in Africa and formerly classified as lyssaviruses. Both viruses have been shown to cross-react with rabies and rabies-related viruses, but their pathogenicity is not well understood. This study presents the complete genome sequences of KOTV and OBOV along with their expression profiles and includes an analysis of their phylogenetic relationships to other rhabdoviruses. The genetic and serological data indicate that both viruses should be classified as a new species in the genus *Ephemerovirus*.

Illumina Technology: Genome Analyzer IIx for 101 bp paired-end reads

This study characterizes the genome of the Niakha virus (NIAV), a previously uncharacterized rhabdovirus isolated from sandflies in Senegal. The viral RNA was sequenced using an Illumina HiSeq system, and assembled and compared to other rhabdoviral genomes. The phylogenetic analysis resolved the NIAV virus as phylogenetically distinct from the eight currently recognized *Rhabdoviridae* genera.

Illumina technology: HiSeq 1000 with 50 bp paired-end reads

Plants have a well-defined defense mechanism against invasive nucleic acids, such as viral transcripts. The silencing pathway is quite sophisticated, but the distinct steps and nature of effector complexes vary among—and even within—species.

RNA viruses in insects are targets of an RNA interference (RNAi)-based antiviral immune response. This study investigated the role of RNAi in DNA virus infection using *Drosophila melanogaster* infected with invertebrate iridescent virus 6 (IIV-6) as a model. To investigate whether dsRNA is processed into viral small interfering RNAs (vsiRNAs), small RNAs were sequenced using an Illumina Genome Analyzer. The data indicate that abundant vsiRNAs were produced in an RNAi pathway–dependent manner, indicating that RNAi provides an antiviral defense system against dsDNA viruses.

Illumina Technology: Genome Analyzer for small-RNA libraries

With growing industrial interest in algae, as well as their critical roles in aquatic systems, the need to understand the effects of algal pathogens is increasing. In a model algal host-virus system, Illumina RNA sequencing was applied to determine expression of genes homologous to those involved in RNA silencing and virus response in higher plants. This method detected 325 of 375 defined homologs that were expressed in healthy as well as infected algae cells, suggesting that RNA silencing may be utilized by algae as a response to virus infection.

Illumina Technology: Genome Analyzer for RNA-Seq with 51 bp reads

The western flower thrips (WFT) is an insect that causes worldwide agricultural damage, both directly by feeding and indirectly by vectoring Tospoviruses, such as tomato spotted wilt virus (TSWV). In this study the transcriptome of WFT and the differential gene expression of WFT in response to TSWV infection were characterized using an Illumina HiSeq system for RNA sequencing. The authors found that TSWV can regulate cellular processes and immune response, suggesting a mechanism that does not result in detrimental effects for its vector host, WFT.

Illumina technology: HiSeq 2000 for RNA-Seq

INSECT VIRAL PATHOGENS

A large number of insect viruses with small RNA genomes and morphological resemblance to vertebrate picornaviruses have been characterized. While some of these viruses may cause only latent infections without significant adverse effects on the host, others may cause debilitating or lethal infections in the host

References

The authors generated a complete genome sequence of a single-stranded RNA virus (LyLV-1) by sequencing cDNA prepared from infected insects. High similarity to the honey bee sacbrood virus (SBV) genome, and similarities in the genome organization and amino acid sequence with the viruses of the family Iflaviridae, suggested that LyLV-1 was a novel member of this family.

Illumina Technology: Genome Analyzer, 36 bp reads

The brown planthopper is one of the most important pests of rice plants because of the damage it causes to the plant, directly as well as through transmission of the rice ragged stunt virus and rice grassy stunt virus. In this study, a previously unknown iflavirus was identified in a laboratory colony of the brown planthopper. The virus and its host were characterized by sequencing, and a test of transmission showed that the virus can be transmitted horizontally.

Illumina technology: HiSeq 2000 for mRNA-Seq

RNA viruses in insects are targets of an RNA interference (RNAi)-based antiviral immune response. This study investigated the role of RNAi in DNA virus infection using Drosophila melanogaster infected with invertebrate iridescent virus 6 (IIV-6) as a model. To investigate whether dsRNA is processed into viral small interfering RNAs (vsiRNAs), small RNAs were sequenced using an Illumina Genome Analyzer. The data indicate that abundant vsiRNAs were produced in a RNAi pathway–dependent manner, indicating that RNAi provides an antiviral defense system against dsDNA viruses.

Illumina Technology: Genome Analyzer for small-RNA libraries

BACTERIOPHAGES

Bacteriophages (phages) are viruses that infect bacteria and play a prominent role in shaping microbial populations\(^\text{45}\). The genetic diversity of the population is very high, and it appears that phages have been actively evolving for billions of years. Frequent horizontal genetic exchange results in pervasive mosaicism in their architectures and the emergence of novel bacterial pathogens. For example, the shiga toxin–carrying lambdoid prophage of pathogenic *E. coli* serotype O104:H4 was responsible for the recent outbreak in Germany\(^\text{46}\). Conversely, the current crisis with antibiotic-resistant bacteria has renewed interest in phage therapy and biocontrol approaches in infection control\(^\text{47}\). With the advent of next-generation sequencing, the coming years of phage genome exploration promise to be especially revealing\(^\text{48}\).

Illustration of a bacteriophage

The scale and impact of bacteriophage distribution can be dramatic. For example, about half of the primary production in the world’s oceans is carried out by two cyanobacterial clades *Prochlorococcus* and *Synechococcus*. It is estimated that 40–50% of cyanobacteria are infected by cyanophages that kill 10–50% of their hosts daily. This drives rapid diversification as the bacteria develop resistance and also make dissolved carbon available as the bacterial cells lyse.

The constant threat of phage predation has led to an evolutionary arms race whereby a broad range of bacterial immunity mechanisms result in the evolution of diverse phage immune evasion strategies\(^\text{49}\). A primary defense strategy that eubacteria and archaea mobilize against foreign nucleic acids is based on clustered regularly

interspaced short palindromic repeats (CRISPR) loci. These loci, together with CRISPR–associated (Cas) genes, form the CRISPR/Cas adaptive immune system50,51,52.

Reviews

References

The oral microbiome may have significant impact on oral health. In this study 16 samples were collected from dental swabs and plaques to characterize the microbiome composition and variation. Approximately 0.16% of the reads were assigned to phages, such as Actinomyces and Streptococcus phages. Each group of samples contained multiple distinct Actinomyces phages

Illumina technology: HiSeq 2000 and cBOT for 100bp paired-end reads

CRISPR and Cas genes provide acquired resistance against viruses and conjugative plasmids for most archaeal and many bacterial genomes. The distribution and diversity of known CRISPRs in human microbiomes was studied based on datasets from the Human Microbiome Project. The detailed characterization of CRISPR loci may be applied to tracing rare species and the virus exposure of individuals.

Illumina technology: Human Microbiome Illumina WGS Reads (HMIGWS) Build 1.0

Bacteriophage therapy (phage therapy) is an alternative to antibiotic treatment for bacterial infections. Bacteriophages are viruses that infect bacteria, lysing their bacterial host cell. Pharmaceutical companies in Russia produce over-the-counter phage products as liquids or pills to treat infections. This study examined the virus content of one of these products using Illumina sequencing. The analysis revealed 18 distinct phage types and no undesired genes were found in the sequences.

Illumina technology: HiSeq 2000 for 100 bp paired-end reads

Viruses exist as heterogeneous and complex populations comprising similar but nonidentical genomes. Next-generation sequencing can be used to characterize the population, including rare members, with a very high degree of accuracy54. The immune response of the host can also be measured, as well as the T cell response and memory55,56. A deeper understanding of the host-pathogen response promises to greatly improve the speed and success of vaccine development.

References

Farm animals remain at risk of endemic, exotic and newly emerging viruses. Control measures include development of effective vaccines, as well as selective breeding for animals that are less susceptible to disease and/or have a good response to vaccination. This review describes the various approaches applied in practice today and explains why identifying relevant phenotypes for both infectious disease resistance and vaccine response is not straightforward. As one positive development, the authors mention the finer-resolution genotyping obtainable with the Illumina Bovine 50 BeadChip to guide genotype selection.

Illumina technology: Bovine 50 BeadChip

SYMBIOSIS

The evolution of intimate symbiosis requires the coordination of genome content and gene expression between the distinct partner genomes. This coordination allows the fusion of each organism’s capabilities into a single integrated metabolism. Three-way symbioses have been well described in macro- and micro-ecosystems. For example, a symbiotic bacterium that inhabits the pea aphid protects the aphid from a wasp that can otherwise lay eggs in the aphid haemocoel. This protection is conferred by a phage-encoded toxin expressed by the bacterium.58

References

Table 2 | Characteristics of bacteria, microbial eukaryotes and viruses in the human microbiome

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Bacteria</th>
<th>Viruses</th>
<th>Eukaryotic microbes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genome size</td>
<td>0.5-10 megabases</td>
<td>1-1,000 kilobases</td>
<td>10-50 megabases</td>
</tr>
<tr>
<td>Number of taxa in the human microbiome</td>
<td>At least thousands</td>
<td>Unknown, but could be as many as bacteria</td>
<td>Unknown, but may be fewer than bacteria</td>
</tr>
<tr>
<td>Relative abundances</td>
<td>Highly variable</td>
<td>Highly variable</td>
<td>Unknown</td>
</tr>
<tr>
<td>Targeted detection methods</td>
<td>Sequencing of genes such as 16S and 16S rRNA</td>
<td>No universal method for genes, but virus-specific polymerase chain reaction assays for some</td>
<td>Sequencing of 18S rRNA gene</td>
</tr>
<tr>
<td>Shotgun approach to analyses</td>
<td>Alignment to reference genomes or database comparison</td>
<td>Database comparison</td>
<td>Alignment to reference genomes or database comparison</td>
</tr>
<tr>
<td>Subspecies or strain diversity</td>
<td>Moderate sequence variation</td>
<td>High sequence variation</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

Adapted from Weinstock G. M. (2012)59

GLOSSARY OF TERMS AND ABBREVIATIONS

archaea Single-celled microorganisms with no cell nucleus or any other membrane-bound organelles within their cells
BASV Bas-Congo virus, a rhabdovirus
bTB Bovine tuberculosis
Cas CRISPR-associated
CRISPR Clustered regularly interspaced short palindromic repeats
EBOV Ebola virus
EBV Epstein-Barr virus
HBV Hepatitis B Virus
FFPE Formalin-fixed paraffin-embedded
FHV Flock horse virus
HPV Human papillomavirus
IIV Invertebrate iridescent virus
KIMV Kimberley virus
KOTV Kotonkan viruses
MALV Malakal virus
MCM medical countermeasures
NIAV Niakha virus
OBOV Obodhiang viruses
PDV Polydnaviruses
PLRV Potato leafroll virus
PML Promyelocytic leukemia
PyV Polyomavirus
quasispecies a cloud or assemblage of wild-type (WT) and mutant genomes that exist at a mutation-selection equilibrium.
SAAdV Simian adenovirus
SBV Sacbrood virus
SISPA Sequence-independent single primer amplification
SNP Single-nucleotide polymorphism
TDAV Theiler's disease-associated virus
TMAdV Titi Monkey adenovirus
TSWV Tomato spotted wilt virus
virome The sum of all viruses living in the tissues of the host or infecting organisms in the microbiome. These viruses may be further divided into viruses that infect members of each of the three domains of life (e.g., bacterial virome, bacterial phages, or the eukaryotic virome).
VNTR Variable-number tandem repeats
VSV Vesicular stomatitis virus
vsiRNA Viral small interfering RNA
WFT Western flower thrips
WT wild-type
zoonoses An infectious disease that is transmitted between species

31

Viral Detection and Research
A review of publications featuring Illumina® Technology