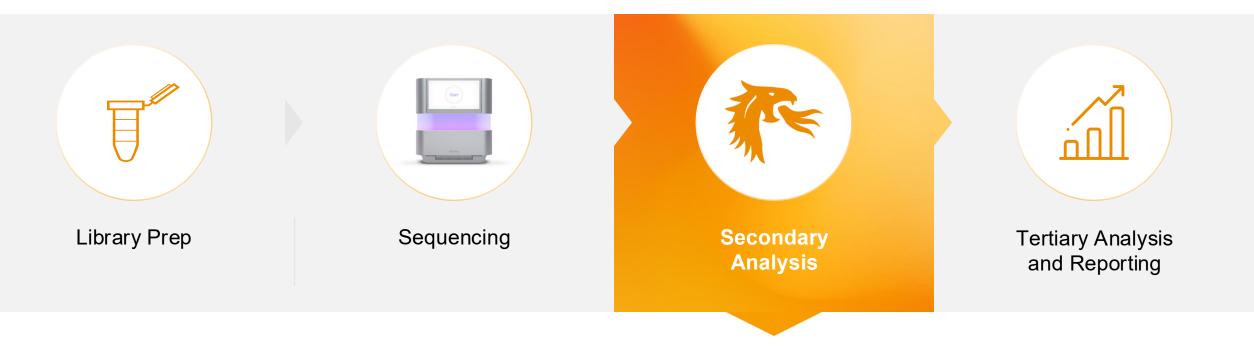
DRAGENTM v4.3: Comprehensive coverage with leading edge innovations

Yi Lian

Staff Product Manager, Illumina


Shyamal Mehtalia

Principle Software Engineer, Illumina

DRAGEN is a collection of bioinformatics pipelines for secondary analysis

DRAGEN (Dynamic Read Analysis for GENomics)

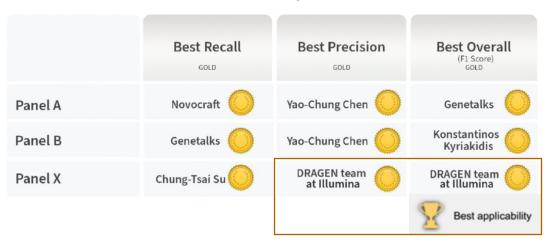
Accurate, comprehensive, and efficient secondary analysis.

Award winning accuracy for germline and somatic variant calling

Germline

PrecisionFDA Truth Challenge V2

Announced August 2020

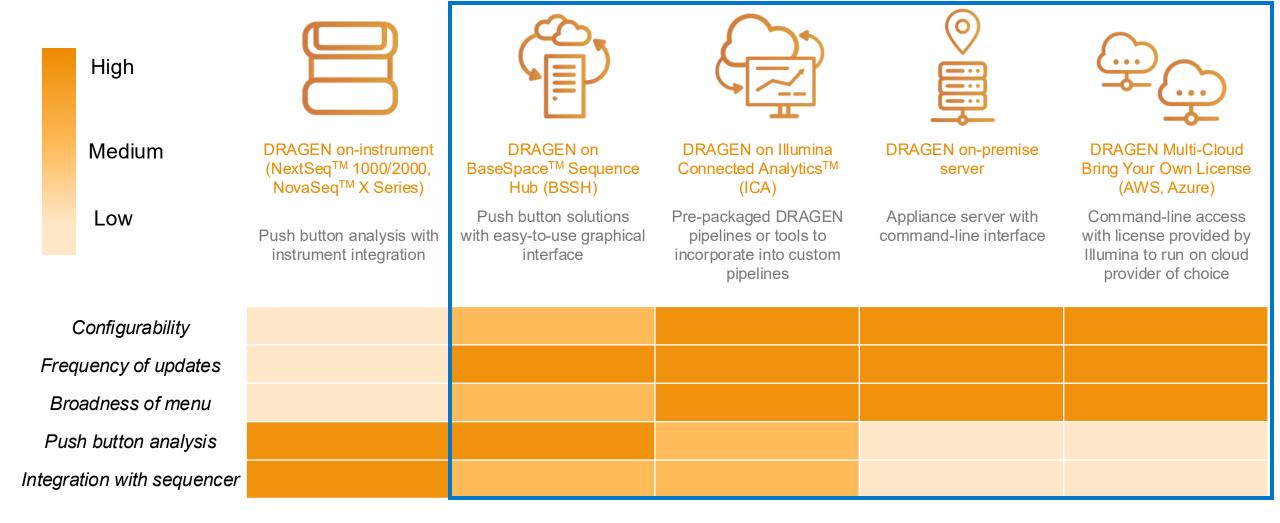


DRAGEN team won best performance in Difficult-to-Map Regions and All Benchmark Regions on Illumina Sequencing Data

Somatic

PrecisionFDA NCTR Indel Calling from Oncopanel Sequencing Data

Announced September 2022



DRAGEN team won "Best Applicability", Best Precision and Best Overall on Panel X

The right solution for your needs

Updated for DRAGEN v4.3

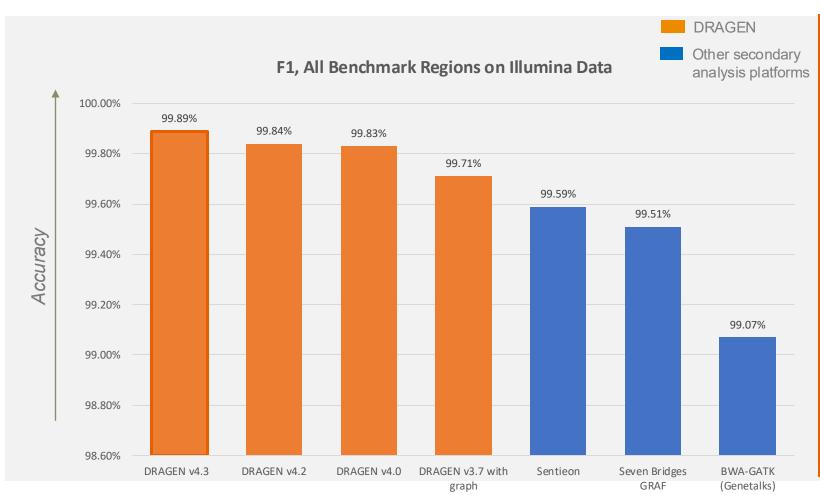
DRAGEN v4.3 A comprehensive genome with industry-leading innovations

More accurate than ever	Comprehensive coverage	Enhanced efficiency & accessibility		
Next generation multigenome (graph) with 128 samples Capture more genetic diversity, reduce ancestry bias and improve SNV accuracy	New specialized callers Variant Calling in segmental duplication regions (PMS2, SMN1, STRC, NEB, TTN, IKBKG)	ORA Compression Expanded support for human methylation data and non-human data with high compression ratio		
Build your own multigenome (Illumina cloud) Build custom multigenome reference from assemblies reducing bias in your population studies	RNA Improved gene fusion calling accuracy and Splice variant calling (beta)	Unified targeted caller output Streamline downstream workflow integration with unified targeted caller output, easier integration with Emedgene*		
Mosaic variant calling Mosaic variant calling for low allele	Al powered annotations Embedded Connected Annotations with	Population Genomics Optimized performance for large		

Emedgene supports unified targeted caller output for select callers

frequency variants

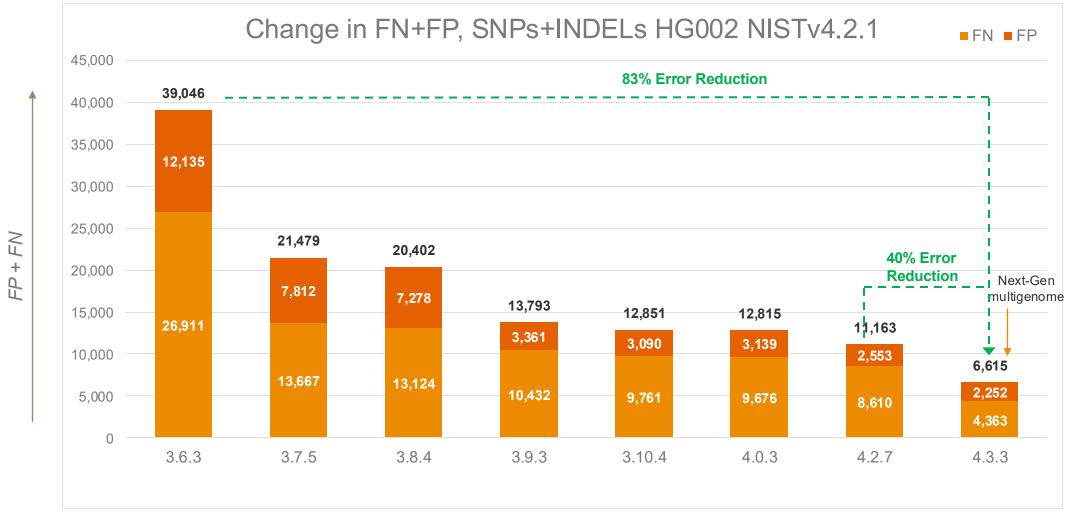
cohort analysis


PrimateAl-3D and SpliceAl

DRAGEN Germline

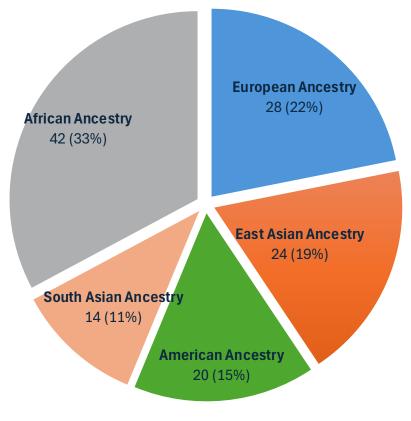
DRAGEN Secondary Analysis

Most accurate secondary analysis in all-benchmark regions*



- Available since v4.0, continuous improvements of DRAGEN Machine Learning (ML) detects variants more accurately and effectively, reducing both false positive rate and false negative rate
- v4.3 Germline integrated mosaic caller brings high sensitivity in mosaics
- v4.3 New population aware multigenome mapper brings significant accuracy gains

^{*}As compared against all participating solutions in F1 score using PrecisionFDA v2 Truth Challenge Benchmark Data (average between HG003 & HG004), data here, internal data on file for V4.

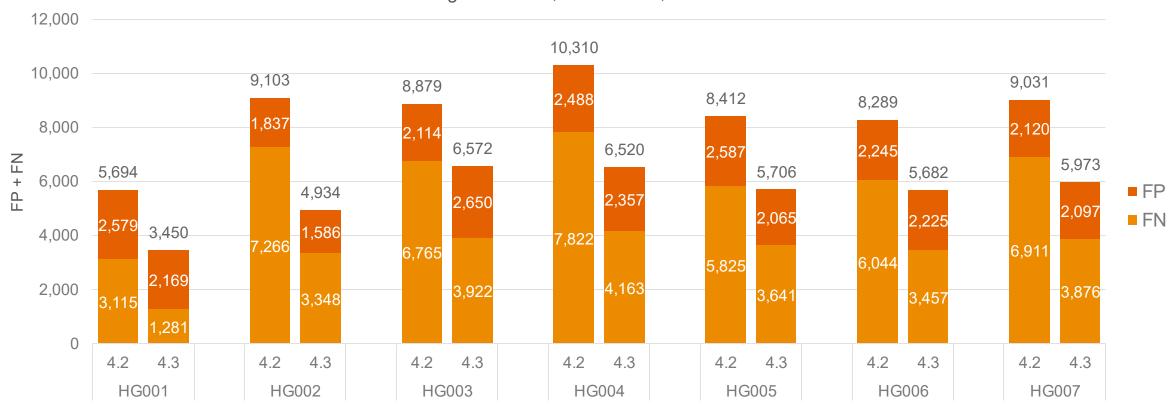


DRAGEN continues to set new standards for accuracy

The most diverse set of data built-in in the next-gen multigenome reference Enabling improved variant calling accuracy across populations

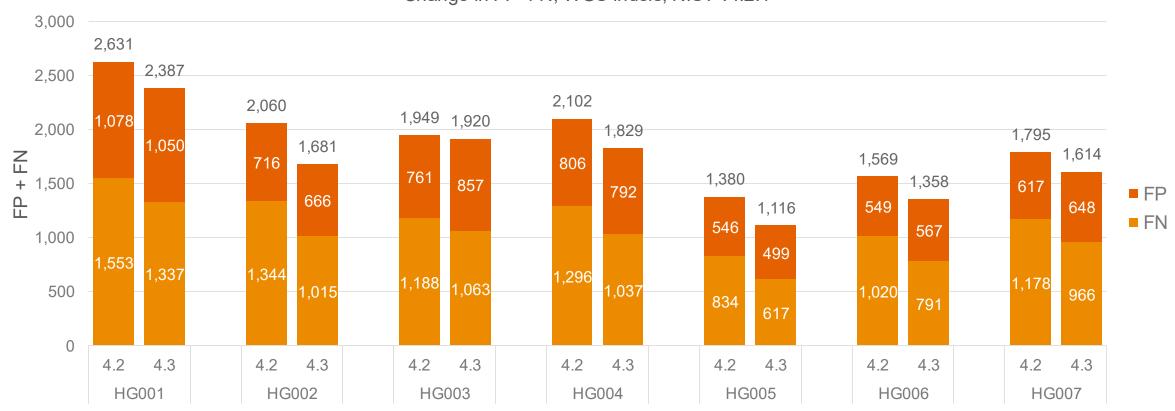
Built from 26 ancestries around the world

Setting standards for population representation across the globe


- Extends sample population to 128 samples of different ancestries around the globe
- Improved mutligenome hash table format, allows scaling to large population panels.
- Pre-built multigenome references for
 - o Hg38
 - o Hg19
 - o CHM13v2.0
 - o hs37d5

Germline small variant caller – SNP accuracy

Reduce SNV FP+FN by 35% on average cross population



Germline small variant caller - INDEL accuracy

Reduce indel FP+FN by 12.1% on average cross population

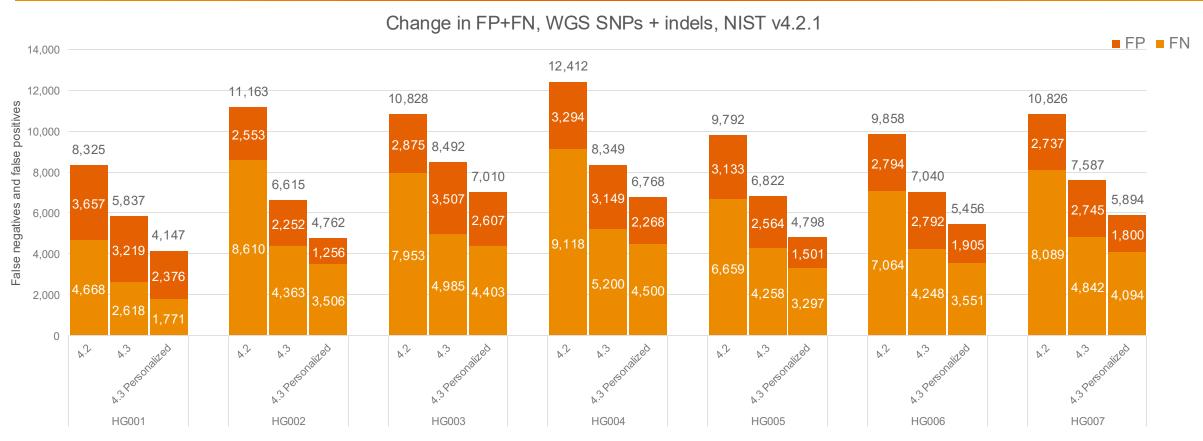
Personalized Reference (beta) for small variant calling

DRAGEN builds a 2-haplotypes personalized reference to impute variants, use as priors in the Variant Caller, create new personalized ML model

- Reduces FP+FN by 20-30 % for SNPs, 7-8 % for INDELs
- Easy to use end-to end workflow with single flag
- Supports both WGS and WES pipelines

To enable personalized reference:
--enable-personalization=true (default to false)

Causes increased runtime for WGS and WES pipelines. Run time on 30X WGS approx. 45 minutes (small VC only)



Personalized Germline Small Variant Caller – Accuracy

Personalization reduces FP+FN by 28.7% for SNPs, and 7.9% for indels compared to 4.3 *


^{*} Average FP+FN reductions for 7 standard samples (HG001-HG007), compared DRAGEN v4.3 standard

DRAGEN provides tools to build custom multigenome references

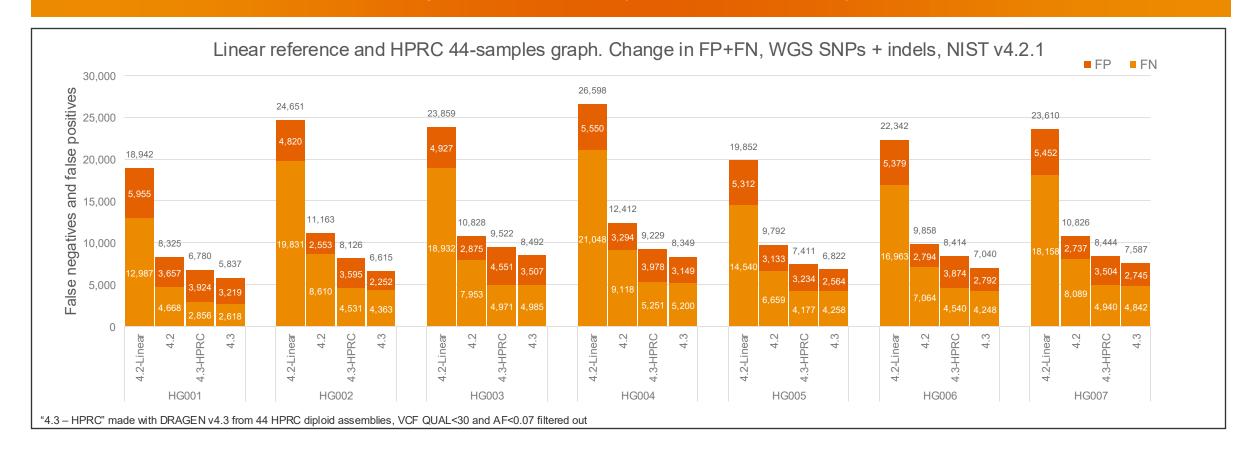
Build reference genome tailored to your population

- Customers can build high-quality custom multigenome references from pangenome data
- Reduces ethnicity bias and allows customization of multigenome references for population-specific studies
- ✓ Two app workflow that allows for graph customization:
 - 1. DRAGEN Pangenome VCF Builder App generate phased msVCFs from custom assemblies (FASTA)
 - 2. DRAGEN Multigenome Reference Builder App -
 - 1. Select prebuilt datasets from HPRC
 - Combine prebuilt HPRC samples and custom samples to build DRAGEN multigenome reference

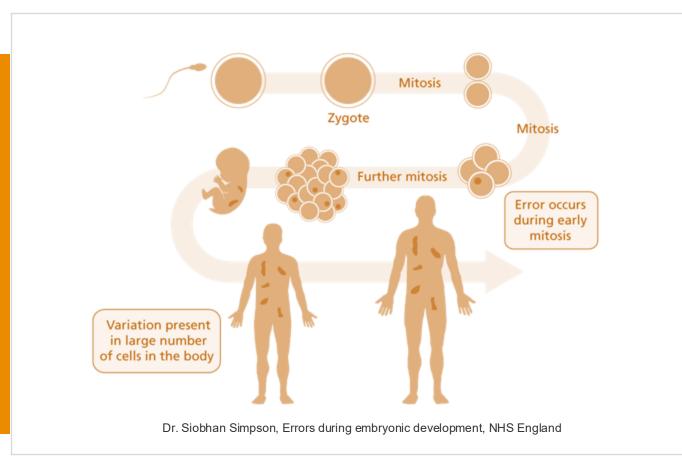
1. Liao W.-W. et al. A draft pangenome reference. Nature 617, 312–324 (2023).

2. Prebuilt HPRC msVCF is available for selection in DRAGEN Multigenome Reference Builder app Blue color text indicates customer inputs, custom haplotype-resolved assemblies FASTA, UI input for HPRC

Availability (Illumina cloud)

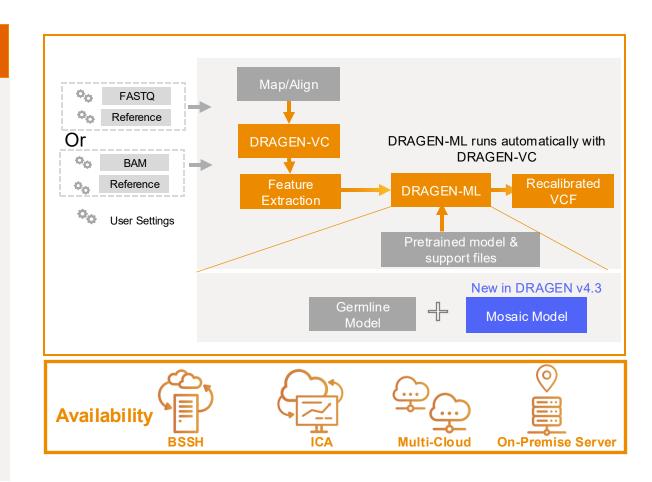


Improve small variant calling accuracy with custom references


DRAGEN HPRC-based multigenome reference yields better accuracy results than DRAGEN v4.2

Introducing mosaic variant caller

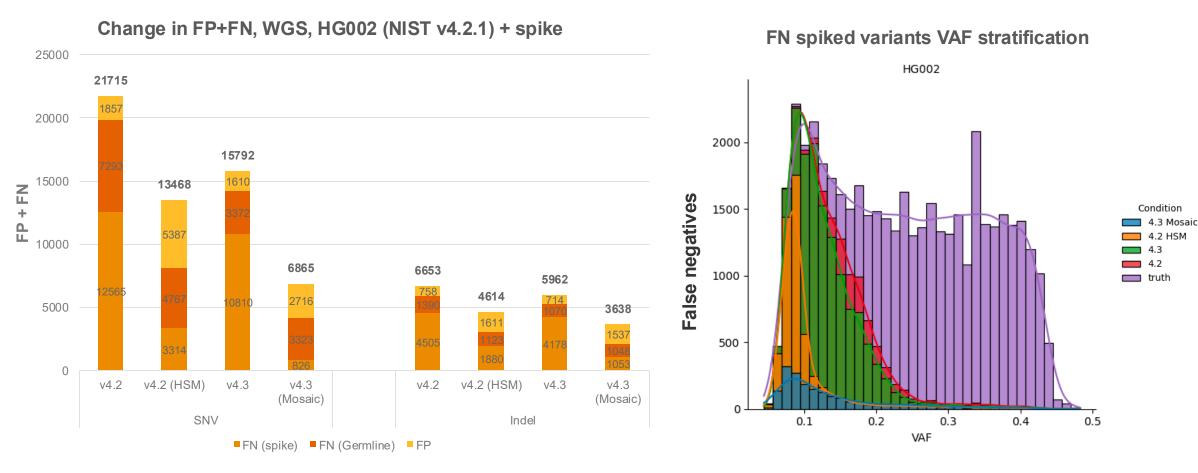
- Mosaicism is a postzygotic mutation that leads to some cells in the body having different DNA than others
- Mosaic variants occur at low allele frequencies, making them hard to detect
- To study the effects of mosaicism on biology and disease, mosaic variants need to be mapped at high sensitivity and high depth, is compute intensive



Detect Mosaic variants at low allele frequency

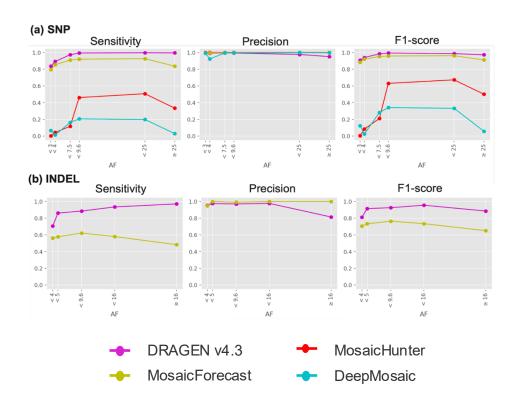
Enable Mosaic variant detection at low allele frequency

New in v4.3 - integrated mosaic caller


- Integrated single workflow with germline variant calling. Facilitated by Machine Learning.
- By default, small VC reports mosaic variants with >20% allele frequency.
- Low-AF Mosaic Detection Mode (optional): Enables calling of mosaic variant with low allele frequency (custom defined threshold).
- Enabled for both WGS and Enrichment pipelines

Greatly Improved Recall for Low Allele Frequency Variants

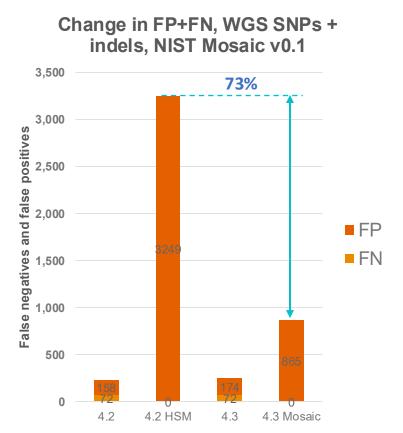
Higher sensitivity for variant calls at low AF, with low added FPs


^{*} Tested with DRAGEN v4.2 on NIST HG002 dataset, with 3,936,174 variants of which 45,581 uniformly distributed spiked variants between 5% and 45% VAF at 35x coverage

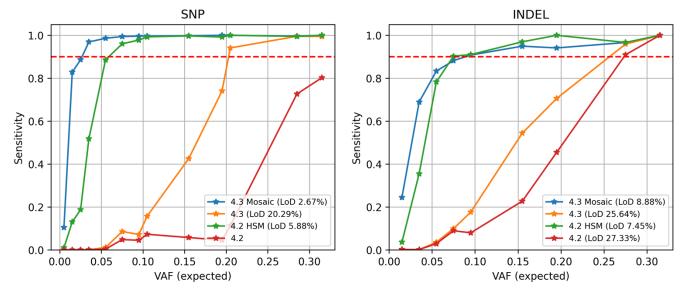
DRAGEN is more accurate than other mosaic callers

End-to-end analysis with fast turnaround time

Mosaic variant calling accuracy comparison


Mosaic variant calling runtime comparison

	Runtime (hr)	Hardware
DRAGEN v4.3	0.3	DRAGEN Server v4
DeepMosaic	5.5	Multi-core CPU + NVIDIA A100 GPU
MosaicForecast	12.8	Multi-core CPU


^{*} DRAGEN runtime includes map/align. Other runtimes were for mosaic variant calling only.

Greatly improved precision for high-depth samples with fast turnaround time

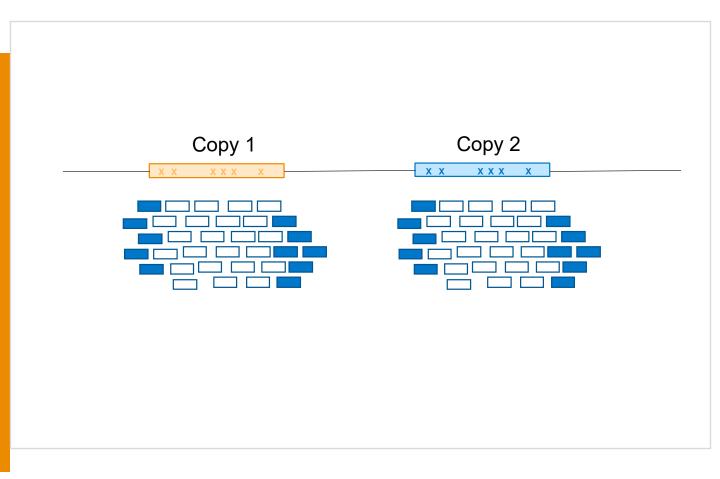
Tested on HG002 WGS dataset at 300x with NIST/MDIC *draft* mosaic truth set

Limit of Detection at 2.67% AF for SNPs and 8.8% AF for Indels on 1100x WES admixtures*.

	Runtime
300x WGS	6 hours
1100x WES	20 minutes

^{*}Ha, YJ., Kang, S., Kim, J. et al. Comprehensive benchmarking and guidelines of mosaic variant calling strategies. *Nat Methods* 20, 2058–2067 (2023).

Ha, YJ., Oh, M.J., Kim, J. et al. Establishment of reference standards for multifaceted mosaic variant analysis. *Sci Data* 9, 35 (2022).


DRAGEN provides accurate genotyping of clinically relevant genes in segmental duplications

- Segmental duplications (SegDup) are 1 kb+ regions with ≥ 90% similarity
- Contain sequences that are relevant to disease
- Represent 5% of the genome, and have poor mappability

Genotyping in segmental duplications with

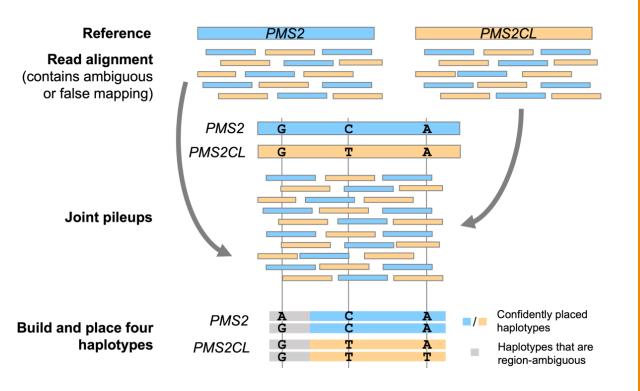
DRAGEN v4.3

- ✓ SNV, indel
- ✓ CNV

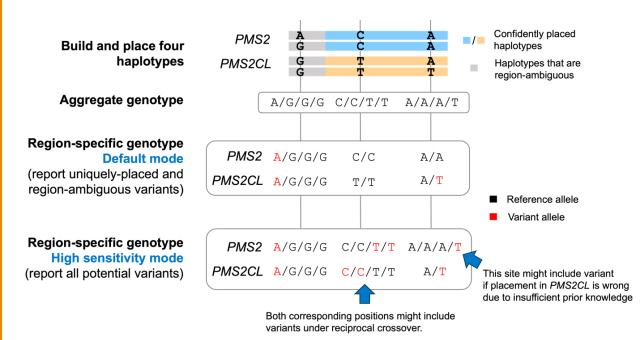
Multi-region joint detection (MRJD) enables de novo germline small variant calling in paralogous regions

DRAGEN MRJD Caller (NEW!)

- ✓ Haplotype-based variant calling from collected reads potentially mapped to SegDup regions
- ✓ Genotyping for 7 medically relevant genes in SegDup regions
- ✓ Runs as standalone pipeline on DRAGEN server (integration with Germline workflow in the future)

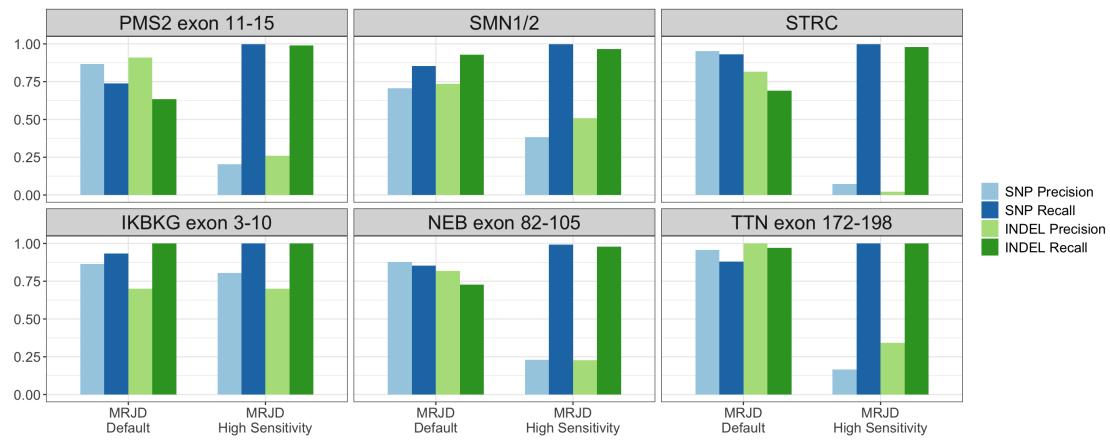


				
Gene	Application Conditions			
PMS2	Hereditary Cancer Screening e.g. Lynch Syndrome for Colorectal/Endometrial Cancer			
SMN1/SMN2 (small variants)	Carrier Screening Spinal Muscular Atrophy			
STRC	Carrier Screening Nonsyndromic hearing loss			
NEB	Carrier Screening Nemaline myopathy			
TTN	Newborn Screening & Rare Diseases Cardiomyopathy			
IKBKG	Newborn Screening Incontinentia pigmenti, hypohidrotic ectoderm al dysplasia			



Multi-region joint detection (MRJD) enables de novo germline small variant calling in paralogous regions

1 Build and place all haplotypes using all reads


Report uniquely placed and region-ambiguous variants

MRJD empowers researches on clinically relevant and challenging genes

- Benchmarked on more than 100 cell lines per gene (using RTG tools squash ploidy mode)
- MRJD High Sensitivity mode offers high recall at the expense of precision, with low spurious call rate

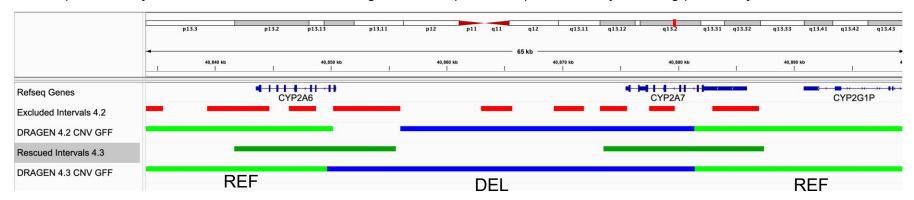
Detect copy number variations in segmental duplications

DRAGEN v4.3 rescues ~1Mbp of CNV bins previously excluded from analysis.

- Improves CNV detection across 43 clinically relevant genes
- Enabled by default for DRAGEN germline WGS analysis with Hg38 reference

Example Command Line:

```
dragen \
-r <HASHTABLE> \
--output-directory <OUTPUT> \
--output-file-prefix <SAMPLE> \
--ref-dir <HASHTABLE> \
--bam-input <BAM> \
--enable-map-align false \
--enable-cnv true \
--cnv-enable-self-normalization true
```

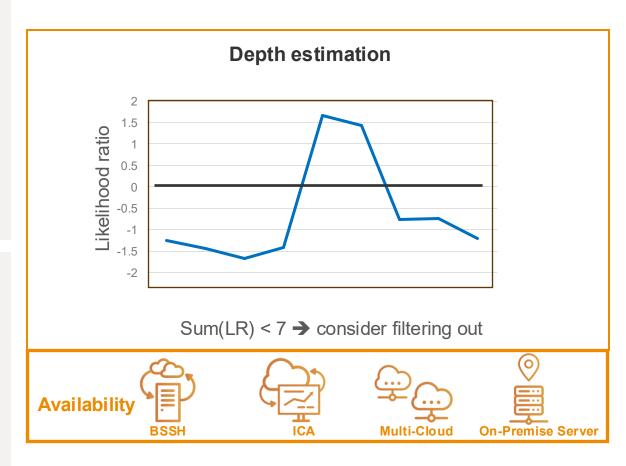



CNV bin rescuing allows for more accurate CNV calls in segmental duplication regions

Experimentally confirmed CYP2A6 – CYP2A7 gene fusion (HG01755) identified by rescuing previously excluded bins

Comparison against experimentally validated CNV calls in segdup genes

	No. samples	Correct by DRAGEN	Method & Citation
CYP2A6	20	20 (100%)	getRM Pratt et al. 2016
RHD/RHCE	40	38 + 1* (97.5%)	Molecular Inversion Probes (MIP) Nuttle et al. 2013
FCGR3A/B	40	39 (97.5%)	TaqMan qPCR Qi et al. 2016


Enhanced CNV calling using WES data

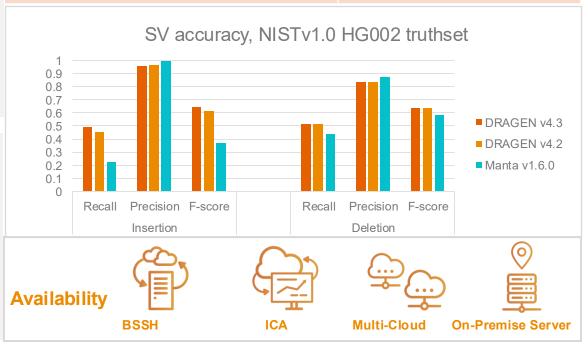
New filters reduce false positive rates

- Likelihood Ratio (FORMAT: LR) Log10 likelihood ratio of ALT to REF
- Dinucleotide Biases (FORMAT: GC/CT/AC) Measure of dinucleotide biases that are outside of typical ranges will be filtered out.

Panel of Normals (PoN) updates

- Improved PoN validation DRAGEN cross checks critical options against the case sample under analysis to ensure matched parameters.
- **PoN Metrics**: Additional panel of normals statistics calculated per target interval, originally introduced in 4.2.

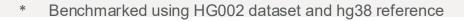
Improved structural variant calling

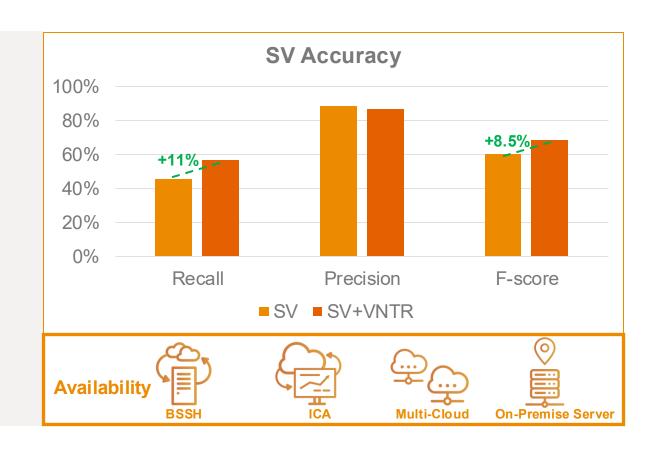

SV accuracy improvements

- Robust assembly methods in repeat regions **improves** insertion recall¹
- DRAGEN SV retains higher recall in Mobile Element Insertions (MEI) when compared to dedicated methods²
- 1 Compared against NISTv1.0 HG002 truthset.
- 2 Insertions stratified by annotation from Delage et al on NISTv0.6

Run time improvements

- Additional assembler time adds minimal runtime compared to v4.2.
- Significant reduction in runtime with CRAM library updates.


Method	MEI Recall
DRAGEN 4.3	0.885
DRAGEN 4.2	0.867
Mobster 0.2.4.1	0.756



Improve structural variant recall with new VNTR caller

- Variable Number Tandem Repeats (VNTRs) –
 tandem repeat (TR) with pattern size ≥10 bp, larger
 than STRs.
- New VNTR caller for large variant calls in TRs
 - Supports hg38, hg19, GRCh37 references with curated VNTR catalog included
 - Automatically integrates calls into SV VCF
- Improves SV recall by <u>>10%</u> *

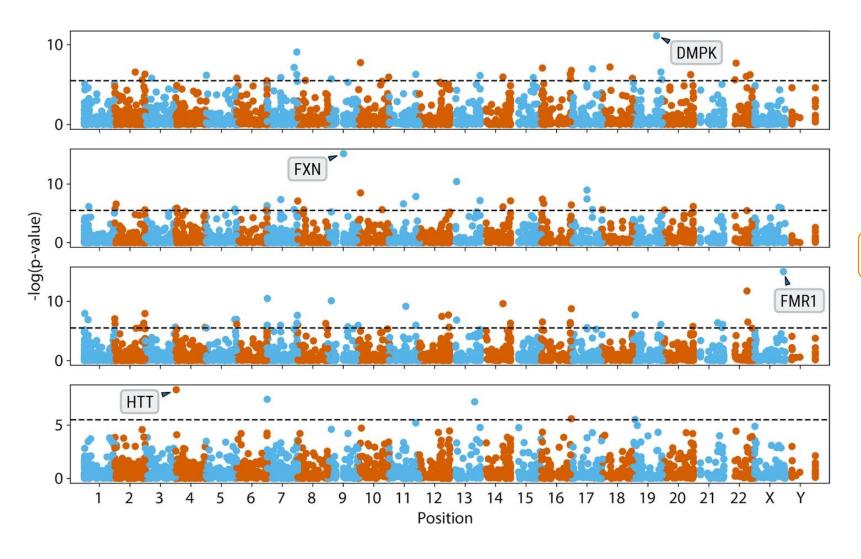
VNTR Caller - Detects expansions and contractions in tandem repeat regions

- Enabled with option "--enable-vntr true"
- Reports calls for all TR regions in input catalog bed
- Specialized calling of copy number per region (haplotype-resolved when possible)
- Utilizes full read-fragment information
- Realigns reads to TR sequence as necessary
- Genotyping of top-scoring haplotypes from Bayesian model using classifications of read fragments

DRAGEN-VNTR reports calls following the VCFv4.4 spec:

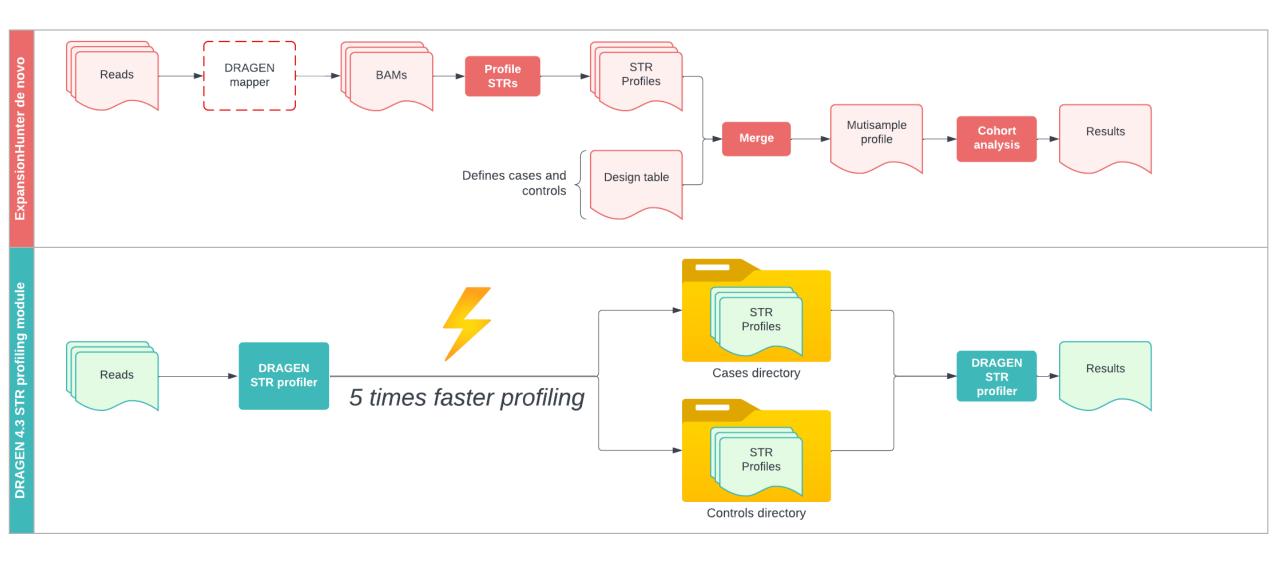
- REFRUC: reference copy number
- RUC: total copy number found per haplotype
- RB: total length of each haplotype

Discover new STR expansions with the STR profiler module


ExpansionHunter de novo is now in DRAGEN with faster compute times and improved ease of use

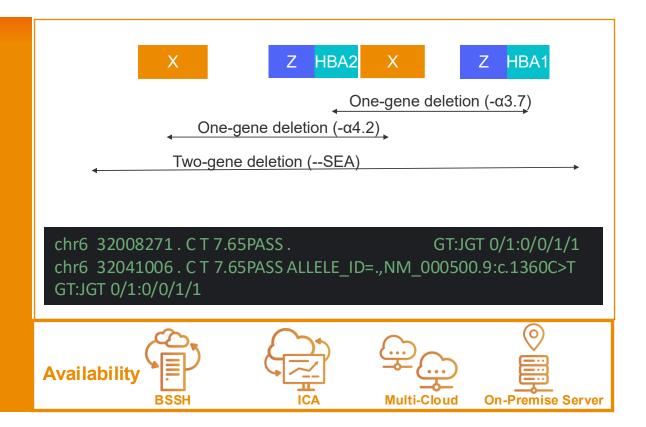
- Compute sample profiles while mapping:
 - --enable-str-profiler=true
- Compare cohorts of profiled samples:
 - --enable-str-profiler=true
 - --str-profiler-analysis = < casecontrol | outlier >

Cases vs controls						
contig	start	end	motif	pvalue	bonf pvalue	counts
chr1	1246	1347	AAAG	0.3356	1	[]
Outlier						
contig	start	end	motif	Top Zscore	Top counts	counts
chr1	1114	1249	ACAG	2.46	5.12	[]
Availability BSSH ICA Multi-Cloud On-Premise Server						


STR expansions are "rediscovered" in affected individuals

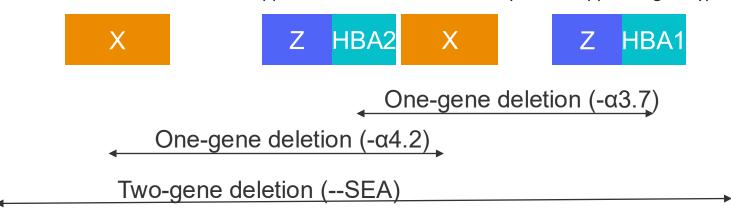
Dolzhenko et al., 2020

STR profiling module – streamlining the workflow



Unified VCF output for three targeted callers

Improves efficiency for downstream interpretations


- Enabled for HBA, GBA and CYP21A2
- Records with ambiguously placed variants can be
 PASS even with low QUAL and low GQ values
- Variants require further assay if placement in target gene is required
- Small Variant VCF Output for Recombinant Haplotypes for GBA and CYP21A2

HBA Structural Variant VCF Output

- Forced genotyping of all 5 supported structural variants:
 - -α3.7 DEL and ααα3.7 DUP
 - -α4.2 DEL and ααα4.2 DUP
 - --SEA DEL
- ALLELE ID INFO field used to label variant alleles
- SVModelQual FILTER applied when data does not fit any of the supported genotypes

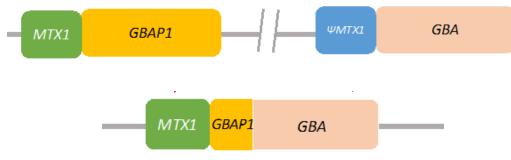
Targeted calling for these 3 genes is enabled by default when small VC is enabled (only for WGS).

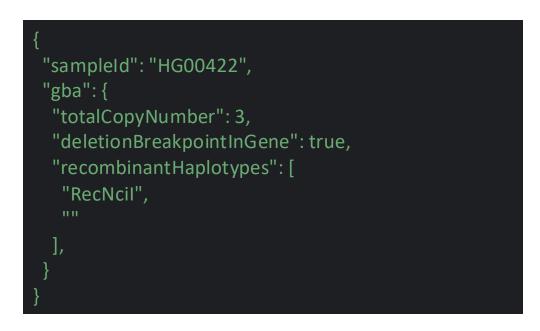
```
{
  "sampleId": "NA19138",
  "hba": {
    "totalCopyNumber": 2,
    "genotype": "-a3.7/-a4.2",
    "genotypeQuality": 64,
    "genotypeFilter": "PASS",
    "variants": []
  }
}
```

```
chr16 165397 . A <DEL> 0.00 LowQUAL END=184700; ALLELE_ID=.,-- GT 0/0 chr16 170262 . G <DEL>,<DUP> 86.17 PASS END=174517; ALLELE_ID=.,-a4.2, aaa4.2 GT 0/1 chr16 173301 . A <DEL>,<DUP> 86.17 PASS END=177104; ALLELE_ID=.,-a3.7, aaa3.7 GT 0/1
```


VCF Output for Region-Ambiguous Small Variants

- Enabled for HBA, GBA and CYP21A2
- Records can be PASS even with low QUAL and low GQ values
- These variants require further assay if placement in target gene is required
- VCF format consistent with MRJD regionambiguous variants
- HGVS identifiers reported in ALLELE_ID INFO field
- Reported genotypes are consistent with any overlapping SV DELs detected by the caller
- Polyploid genotypes and associated quality scores for "joint" analysis of homologous sites are reported in separate VCF fields (e.g. JGT, JGQ, JPL)


```
{
    "sampleId": "WGS1000-P4-A5",
    "cyp21a2": {
        "totalCopyNumber": 4,
        "variants": [ {
            "alleleId": "NM_000500.9:c.1360C>T",
            "alleleCopyNumber": 2,
            "genotypeQuality": 18,
            "filter": "PASS"
        } ]
}
```

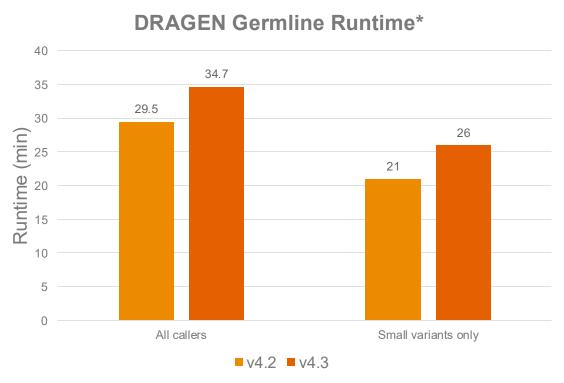

```
chr6 32008271 . C T 7.65 PASS . GT:JGT 0/1:0/0/1/1 chr6 32041006 . C T 7.65 PASS ALLELE_ID=.,NM_000500.9:c.1360C>T GT:JGT 0/1:0/0/1/1
```


Small Variant VCF Output for Recombinant Haplotypes

- Enabled for GBA and CYP21A2
- Gene conversions reported as small variants in target gene rather than SV breakends
- Deletion-like recombinant haplotypes reported as small variants in target gene with overlapping deletion alleles in pseudogene rather than SV DEL

GBAP1 deletions (note: variant allele G at first site due to wrong reference base in hg38):

```
chr1 155214590 . C G,* 150.00 PASS . GT 1/2 chr1 155214625 . G A,* 150.00 LowVQL . GT 0/2
```


GBA1 variants:

chr1 155235217 . C G,* 150.00 PASS ALLELE_ID=.,NM_000157.4:c.1483G>C,. GT 0/1 Chr1 155235252 . A G,* 150.00 PASS ALLELE_ID=.,NM_000157.4:c.1448T>C,. GT 0/1

DRAGEN runtime updates

More accurate, more comprehensive, with small runtime increase

* Average runtime for HG001-HG007 (NIST v4.2.1)

Approx. 15-20% runtime increase compared to v4.2 Includes mapping with multigenome reference and ML calibration

- •26 minutes*- Map, align, and small variant call a 40x human genome
- •34 minutes Call the full suite of structural variants, repeat expansion, and targeted callers

Cohort analysis using gVCF Genotyper

Improved multi-sample VCF output

New options to compress and customize multisample VCF (msVCF) output

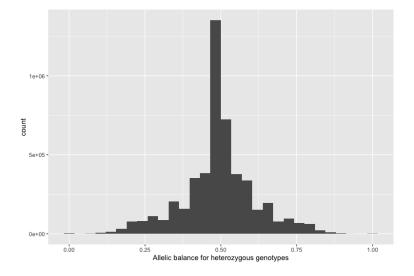
- Sparse compression of msVCF output (Michael Lin, 2020), yields 20-30x size reduction for large cohorts
- Easy customization of msVCF output, easier ingestion into third-party tools
- Many more options available, please refer to user guide

To enable sparse msVCF output:

- --gg-output-type=spVCF
- --gg-squeeze-msvcf=true

How to customize msVCF output:

- --gg-msvcf-info-fields=AC;AN;NS;NS_GT;NS_NOGT
- --gg-msvcf-format-fields=GT:LAD:LPL:LAA:QL



New msVCF metrics in gVCF Genotyper

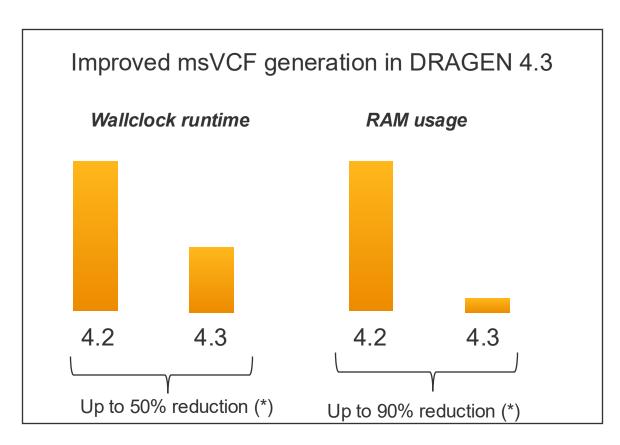
New metrics enable filtering for highly accurate call sets

Genotypes with unusual allelic balance are candidates for filtering

To enable output of allelic balance in the msVCF:

--gg-msvcf-info-fields=ABHom;ABHet;ABHetP

To filter msVCF based on maximum P-value of allelic balance:


--gg-hard-filter="ABfilter:all:ABHetP < 0.05"

For further details, please refer to the DRAGEN user guide, section "Joint Analysis of Multiple Samples"

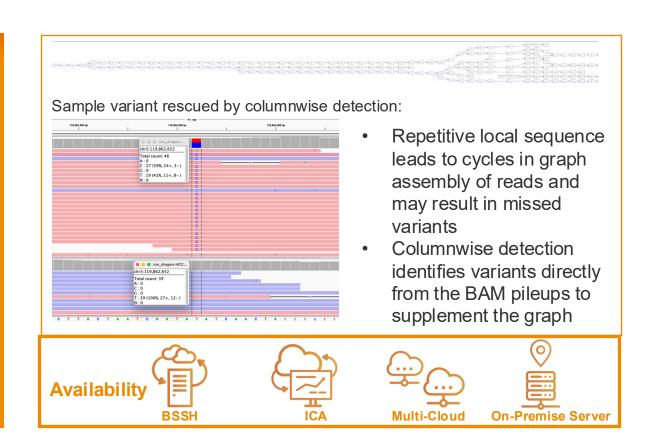
Performance improvements enable Biobank analysis

New gVCF Genotyper callset released for the UK Biobank

- 500k UKBB WGS samples were re-processed with DRAGEN ML recalibration and gVCF Genotyper on ICA
- Aggregated 1.4 billion variants. 44% were singleton SNPs with 57% novel to dbSNP and 81% with AF< 1/100K
- Workflow ran in ICA with 874K jobs and took less than 3 months

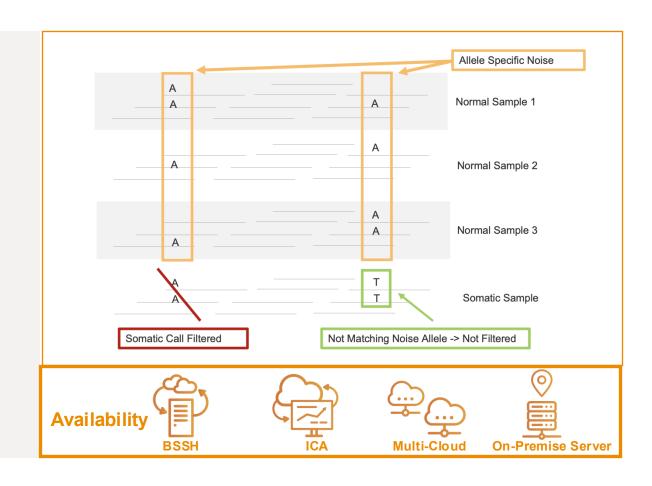
See also:

https://www.illumina.com/company/news-center/feature-articles/uk-biobank-500000-milestone.html



DRAGEN Somatic

General somatic VC improvements


- Columnwise detection is now enabled by default, improving small variant recalls in repetitive regions
- Somatic hotspots are now allele-specific, reducing FP impact of the hotspots feature

Allele specific systematic noise files for somatic variant calling

- New v2 noise file format encodes mean and max noise levels
- Allele-specific filtering
- Generate custom systematic noise files
 - Run normals using tumor-only workflow in sensitive mode
 - --vc-detect-systematic-noise
 # optional
 --vc-detect-systematic-noise-mode=UMI
 - > Aggregate Noise
 - --build-sys-noise-vcf-list
 # panels & WES: mean, WGS: max
 --build-sys-noise-method=max

ASCN calling in somatic WES analysis

Extends ASCN detection in tumor-only mode

Allele-specific copy number (ASCN) analysis extends the utility of copy number alteration by enabling the detection of loss-of-heterozygosity (LOH)

- Available in both tumor-only (new!) and tumornormal analysis, enabling purity estimation, reporting of LOH regions, and HRD Scoring
- Requires panel-of-normals for exome analysis

Example DRAGEN command:

- --tumor-bam-input=<TUMOR_BAM>
- --cnv-population-b-allele-vcf=<CNV_POP_VCF>
- --enable-cnv=true
- --cnv-target-bed=<BED>
- --cnv-normals-list=<PON>

HCC1395	Metric	DRAGEN 4.2 WES T/O	DRAGEN 4.3 WES T/O	DRAGEN 4.3 WES T/N
	Recall	0.397	0.982	0.987
Deletions	Precision	0.017	0.912	0.958
	F-score	0.033	0.946	0.972
	Recall	0.400	0.972	0.968
Duplications	Precision	0.996	0.991	0.990
	Fscore	0.571	0.981	0.979

New DUX4 caller in somatic WGS analysis

DUX4 gene related rearrangements detection

DUX4 gene (DUX4-r) rearrangements are involved in a subtype of acute lymphoblastic leukemia (ALL)

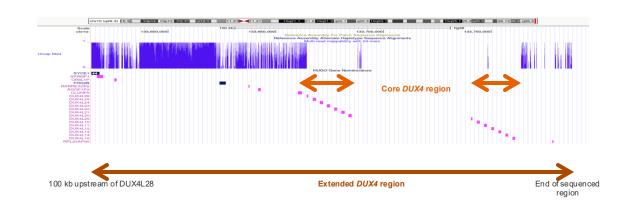
- DUX4 rearrangement detection enabled by machine learning
- Demonstrated high sensitivity and specificity
 - 100% Recall (52 cases of IGH::DUX4 fusions and 1 case of IGH::QSOX1::DUX4 fusion*)
 - 100% Precision (FP = 0)

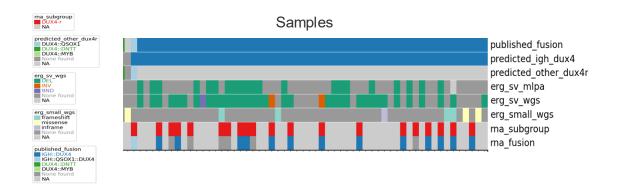
To enable DUX4 caller:

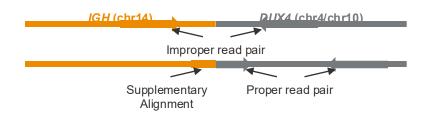
--enable-dux4-caller=true

Example output from dux4.vcf.gz:

- * Supported references: hg38
- * Supports tumor-only analysis




* Validated with collaborators



DUX4 caller

DUX4 gene related rearrangements detection from WGS data

Paired spanning read

Split spanning read

- Define customized DUX4 calling regions
- Generate hypothesis for somatic-only WGS by detecting evidential reads spanning affected genes
- Call DUX4 events with ML models that are validated by orthogonal experiments

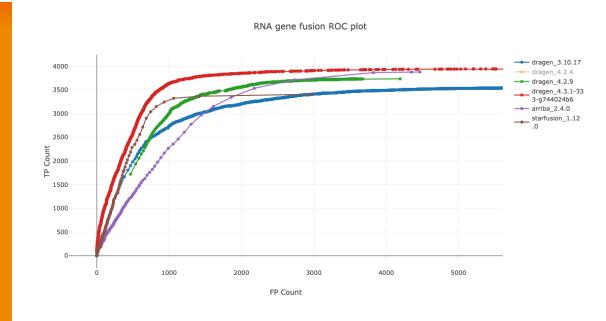
DRAGEN RNA

Improved RNA fusion detection by updated machine learning

Extensively trained machine learning model improves RNA fusion detection accuracy

- Updated non-linear model with more features
- Significantly enhanced truth set, using simulations and real data
- Additional datasets cross library preps (WTS, mRNA, Panels), and read lengths, tissue types, sample types, etc.
- Pure score-based filtering enables better recall/precision tradeoffs

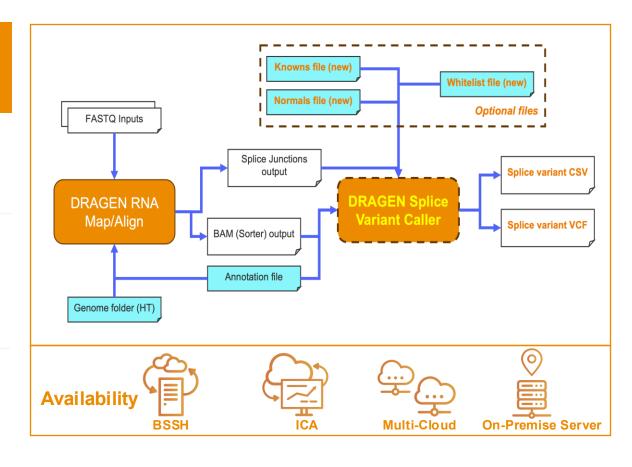
Attribute	Old Model (pre-4.3)	New Model (4.3)	
Model	Linear	Non-linear	
Features Used	8	39	
Truth Description	Gene-pair only	Genes + breakpts	
Total Truth Set Size	223	>12,000	
PASS/FAIL Filters	Score + 5 post-filters	Score only	



Improved RNA fusion detection by updated machine learning

Extensively trained machine learning model improves RNA fusion detection accuracy

- Updated non-linear model with more features
- Significantly enhanced truth set, using simulations + real data
- Additional datasets cross library preps (WTS, mRNA, Panels), as well as read lengths, tissue types, sample types, etc.
- Pure score-based filtering enables better recall/precision tradeoffs



New DRAGEN RNA Splice Variant Caller (beta)

Integrates the caller used in DRAGEN TSO500

- Enables detection of alternative splicing or intragenic fusions
- Targets well-known splice variant biomarker events*:
 - EGFR VIII
 - MET exon14
 - AR-V
- General (non-targeted) option available with increased false positives

* Requires resource files. See <u>user quide for details</u>

RNA Splice Variant Caller Resource Files

Required Resource Files

- Anchored-RNA reference HT (for mapper)
- Gene Annotation file (i.e. GTF or GFF)

Optional (recommended) New Resource Files

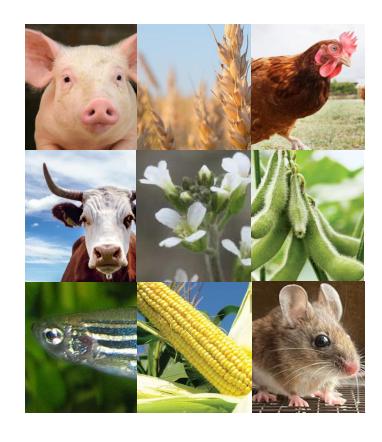
- rna-splice-variant-knowns: Knowns SJ file ("whitelist")
- rna-splice-variant-normals: Normals SJ file ("blacklist")
- rna-splice-variant-regions: BED file for making calls

Column	Column Name	Description
		Semicolon-delimited list of genes containing
1	gene_start	junction start
		Semicolon-delimited list of genes containing
2	gene_end	junction end
3	chromosome	Chromosome for the junction
4	start	Junction start position
5	end	Junction end position
6	strand	Junction strand
7	motif	Junction's intron motif
8	annotated	True only if the splice junction is annotated
9	total_reads_ref	Unique non-supporting reads
10	total_reads_alt	Unique variant (ALT) supporting reads
11	max_spliced_alignment_overhang	Maximum spliced alignment overhang
12	score	Junctions score based on read evidence

continue<pr

prioudo. rou	ao opiit aoi ot	o optio	· variant.	omquety m	app, at	aptiouto roudo.				
#CHROM	POS	ID	REF	ALT	QUAL	FILTER	INFO	FORMAT	SAMPLE	
chrX	66905968		G		0	LowQ;LowUniqueAlignments	SVTYPE=DEL;END=66913996;ALTDEDUP=0;ALTDUP=0;I	AD:DP	0:00	
chrX	66905968		G		1	PASS	SVTYPE=DEL;END=66914514;ALTDEDUP=411;ALTDUP=	AD:DP	411:9240	
chrX	66905968		G		0	LowO:LowUniqueAlignments	SVTYPE=DEL:END=66915499:ALTDEDUP=3:ALTDUP=3:I	AD:DP	0.17291667	

prefix>.splice_variants.vcf.gz



Outputs

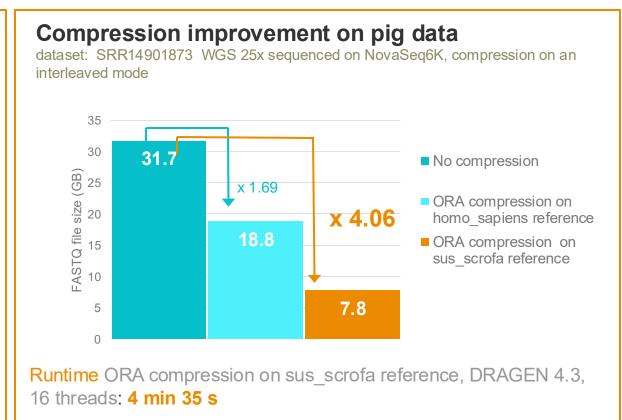
ORA Compression

Compress non-human data at high compression ratio

List of supported species:

- ✓ Homo sapiens bisulfite (methylated data)
- ✓ Sus scrofa (pig)
- ✓ Gallus gallus (chicken)
- ✓ Oryza sativa (Japanese rice)
- ✓ Arabidopsis thaliana
- ✓ Triticum aestivum (bread wheat)
- ✓ Bos taurus (cattle)

- ✓ Glycine max (soybean)
- ✓ Rattus norvegicus (Norway rat)
- ✓ Zea mays (maize)
- ✓ Danio rerio (zebrafish)
- ✓ Mus Musculus (house mouse)
 - Caenorhabditis Elegans (roundworm)


Reference files are available on **DRAGEN** product file page

ORA Compression supports more datatypes and species

Reduces file size and storage cost by up to 75%

Compression improvement on human bisulfite data dataset: B-Hela S2 WGS 45x sequenced on NovaSeq6K, compression on an interleaved mode 70 ■ No compression 60 62 x 1.74 ORA compression on homo sapiens reference $\times 4.00$ 35.7 ORA compression on homo sapiens bisulfite reference 15.5 10 Runtime ORA compression on homo sapiens bisulfite reference, DRAGEN 4.3, 16 threads: 10 min 25s

DRAGEN Imputation & Population Haplotyping

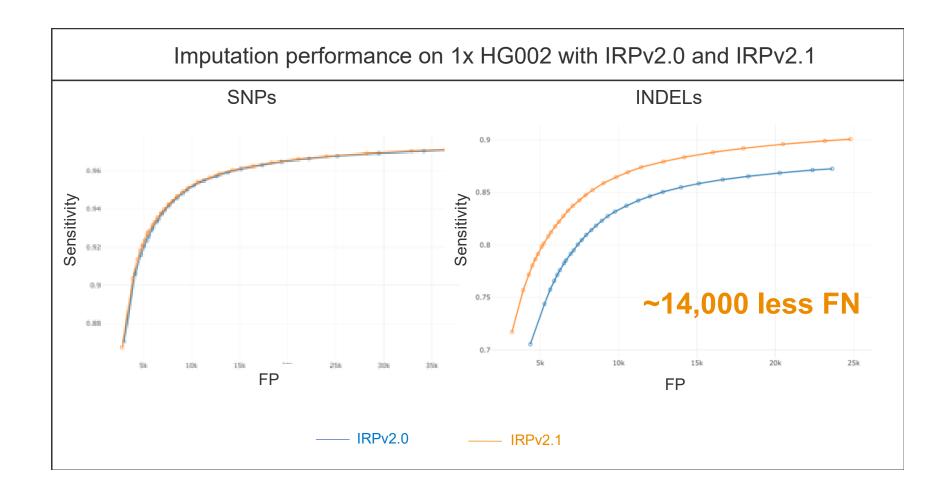
Boost small variant calling accuracy from low-pass data

- New reference panel (IRPv2.1, human hg38) improves indel imputation accuracy
- Supports up to 100 input fastq samples or 1000 input vcf samples¹
- New option to batch imputation samples for a quicker turnaround time
- Build custom reference panels²
- FASTQ inputs are supported by pipelines on BaseSpace Sequence Hub and Illumina Connected Analytics
- 2. Available on ICA only (Population Haplotyping pipeline)

	IRPv2.1	IRPv2.0	
Data source ¹	3,202 samples	3,202 samples	
Multi-allelic SNP positions	Yes	Yes	
INDELs	Yes – all INDELs	Yes - AF>3%	
ChrX	Yes	Yes	
Total Number of Variants	125,715,255	111,279,429	

. Data from 1000 Genome Project, processed with DRAGEN gVCF Genotyper v4.0

Availability



Greatly improved indel imputation accuracy

DRAGEN Imputation and Population Haplotyping

Handle batch of samples through an end-to-end workflow on BSSH and ICA

Population Haplotyping pipeline (ICA)

builds haplotypes from a set of population samples (Integration of ShapeIT5¹ into DRAGEN)

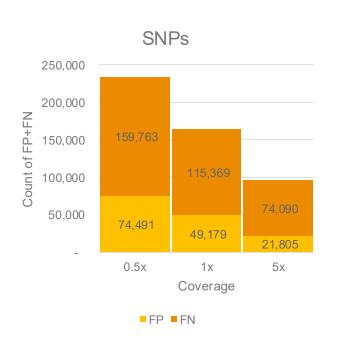
Use case: build a custom reference panel for Imputation

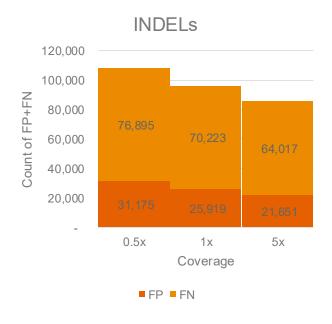
- User-friendly: multi-step pipeline integrated into an end-to-end workflow on BSSH and ICA, tuned for optimization of runtime and accuracy
- Leverage the multi-node infrastructure of ICA

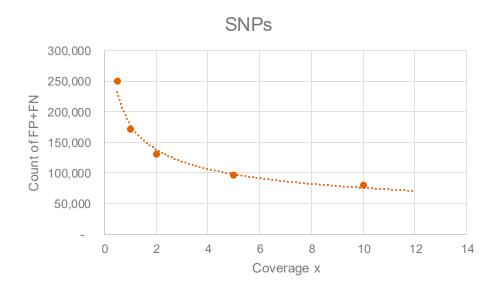
1. Hofmeister, R.J., Ribeiro, D.M., Rubinacci, S. *et al.* Accurate rare variant phasing of whole-genome and whole-exome sequencing data in the UK Biobank. *Nat Genet* **55**, 1243–1249 (2023). https://doi.org/10.1038/s41588-023-01415-w

Availability On-Premise Server²

Imputation pipeline (BSSH/ICA) infers variants of low-pass sequencing data

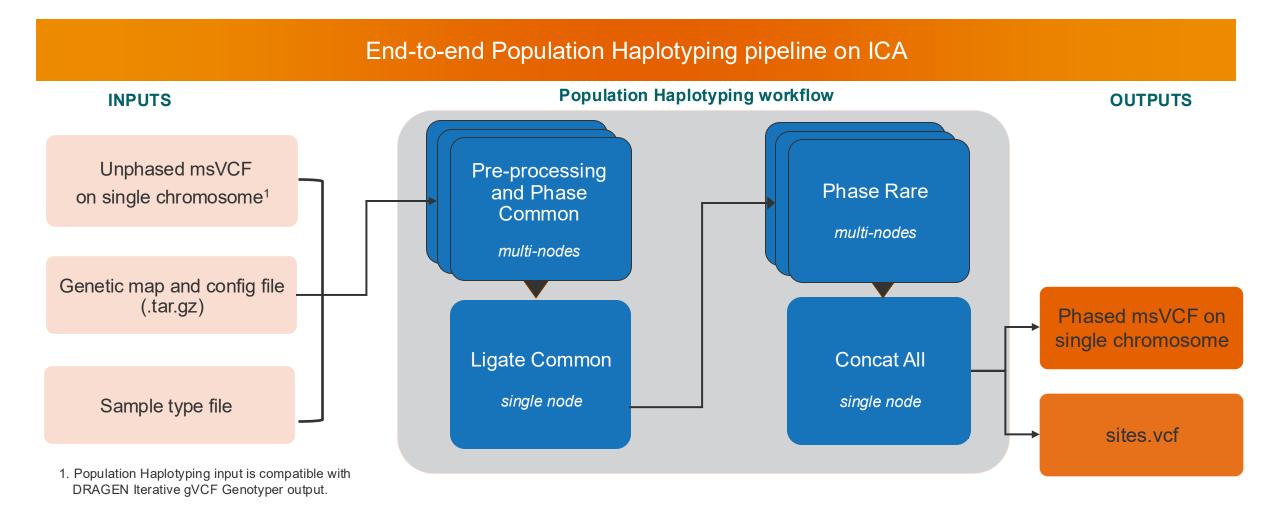

- Supports 100 input fastq samples or 1000 input vcf samples.
- Pre-built human reference panels (hg38) or custom reference panel
- Infer multi-allelic SNPs and INDELs on autosomes and chromosome X
- New option to batch imputation samples for a quicker turnaround time
- New IRPv2.1 available on 4.3 to with better accuracy on INDELs vs IRPv2.0
- Estimated cost for imputation pipeline from fastq (incl. FGT):
 5 icredits/sample



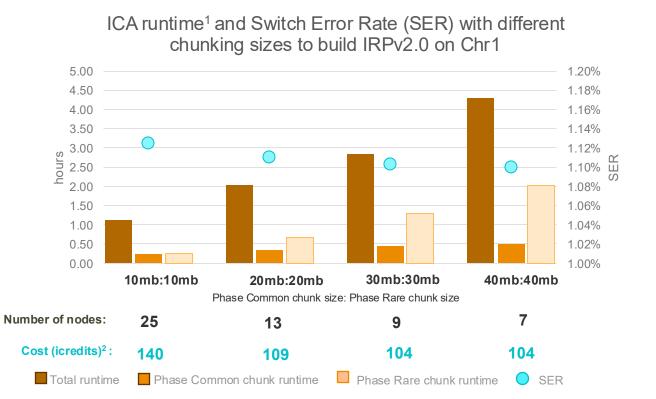


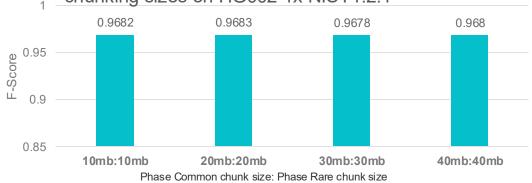
DRAGEN Imputation

Higher gain of accuracy for coverage between 0.5-4x



Imputation pipeline ran with IRPv2.0 on HG002 at different coverage, accuracy test with NIST 4.2.1


DRAGEN Population Haplotyping



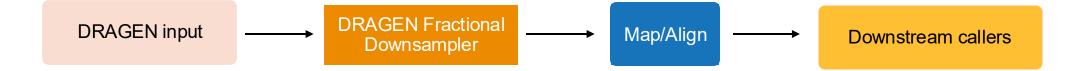
DRAGEN Population haplotyping

Chunking size impacts accuracy, runtime, and cost – ICA workflow includes optimized settings

Optimized default chunking sizes: 20 mb Phase Common: 20 mb Phase Rare

Can be changed to 10 mb Phase Common: 10 mb Phase rare for a faster analysis (higher cost)

- 1. Input of Population Haplotyping: 3,202 samples from 1k Genome Project, pipeline parallelized on ICA nodes, SER computed with WhatsHap with truth: 1kg phased panel on HG00096
- 2. Cost average on 5 runs (compute and storage), 3,202 samples on Chr1



Fractional Downsampler

New DRAGEN Fractional Downsampler Method

Downsample high coverage samples to simulate different amounts of sequencing

All input formats supported by DRAGEN can be used

Downsampling rate is provided by the user and is applied to raw reads coming out of primary analysis without modification

New Fractional Downsampler

Simulates different amount of sequencing for high coverage samples

- Fully integrated workflow with downstream analysis
- Subsampling based on user-defined percentage of reads
- Applied to raw reads with no modification (no trimming, no filtering, pre-dedupped)
- Reduce runtime and cost of analysis using high-depth samples

To enable the fractional downsampler:

--enable-fractional-down-sampler=true

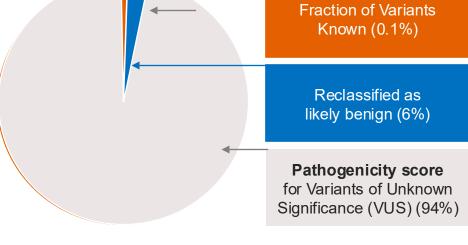
To set percentages of number of reads to keep:

- --down-sampler-normal-subsample=<float>
- --down-sampler-tumor-subsample=<float>

* <float> is the approximate percentage of reads to keep (e.g. 0.05 = 5%)

Illumina Connected Annotations (Nirvana)

Connected Annotations

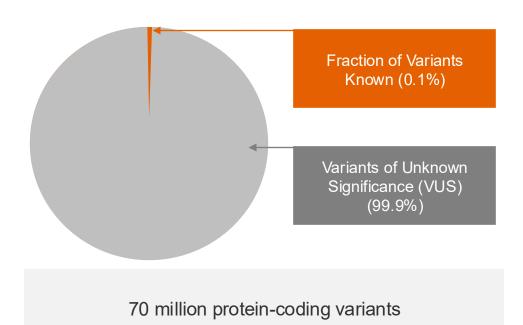

- Build on the foundation of a previous tool called Nirvana
 Illumina Connected annotations is the latest version of the
 annotation engine, incorporating PrimateAl-3D as a key
 dataset
- Leveraging Primate AI-3D reduces variants of unknown significance and predict pathogenicity of all protein coding variants
- Provides predicted impact on coding sequence and protein sequence following Human Genome Variation Society (HGVS) standards. Provides consequences relevant to each variant using Sequence Ontology standard nomenclature.
- Connected Annotations is extremely accurate at an extraordinary speed: 17.29 minutes run time for 6.5 million DNA variants with 99.9983% average accuracy

https://www.illumina.com/science/genomics-research/articles/Connected-Annotations-blog.html

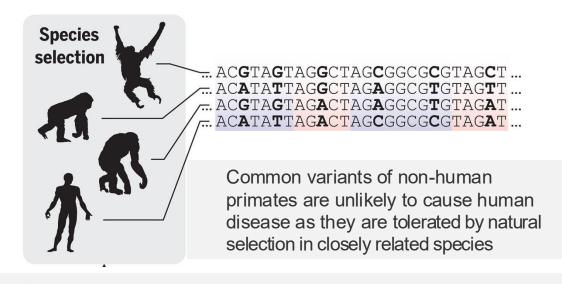
An Illumina Genome annotated with PrimateAI-3D score can reduce VUS and predict pathogenicity of all protein coding variants

Fraction of Variants

Known (0.1%)


70 million protein-coding variants

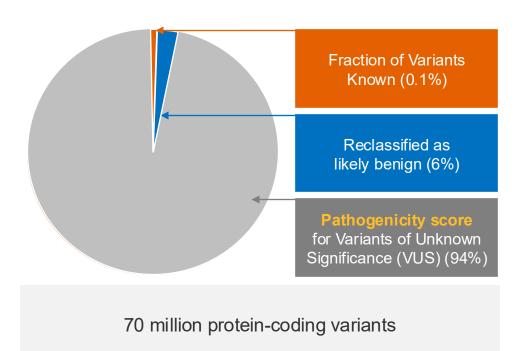
https://www.illumina.com/science/genomics-research/articles/primateai-3d.html



PrimateAI-3D utilizes primate variants and protein structures to solve VUS in human genome coding regions

Our current knowledge of the clinical effects of genetic variants is nascent

PrimateAl-3D, A deep learning model trained on millions of benign primate variants



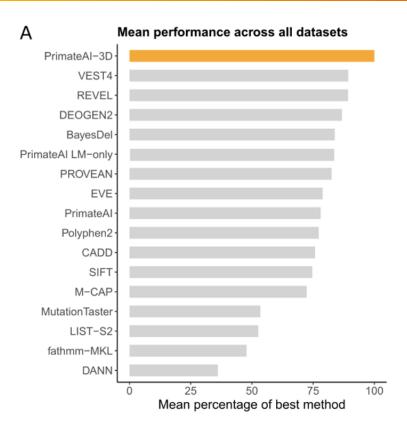
PrimateAI-3D analyzes the 3D structure of proteins and identifies the location of these benign variants. When presented with a new human genetic variant, the model imputes the pathogenicity of the new variant.

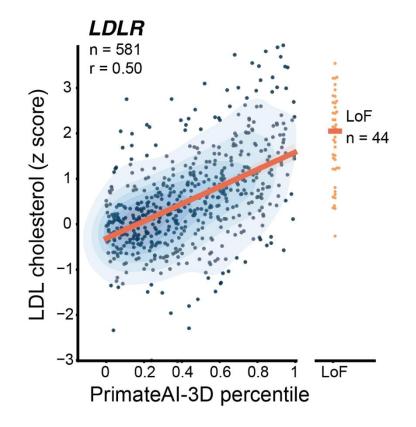
An Illumina Genome annotated with PrimateAl-3D score can reduce VUS and predict pathogenicity of all protein coding variants

Benefits customers in genetic disease and oncology researches

PrimateAl-3D reclassified >4 million human missense variants of previously unknown consequence as likely benign, resulting in a > 50-fold increase in the number of annotated missense variants compared to existing clinical databases.

The pathogenicity of the remaining 94% of variants were computed with deep learning, achieving state-of-the-art accuracy for diagnosing pathogenic variants in patients with genetic disease.


Validated to have the top classifier performance in six different benchmarks based on real-world rare and common disease patient cohorts.


PrimateAI-3D improves genetic risk prediction using rare variants

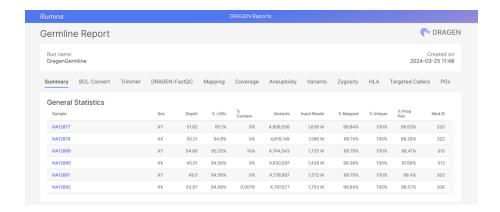
PrimateAI-3D PRS is highly accurate in both European and non-European populations

PrimateAl-3D achieves top performance across six benchmarks for variant interpretation

PrimateAl-3D accurately predicts phenotypes in 450,000 individuals from the UK Biobank

Thank you!

Appendix

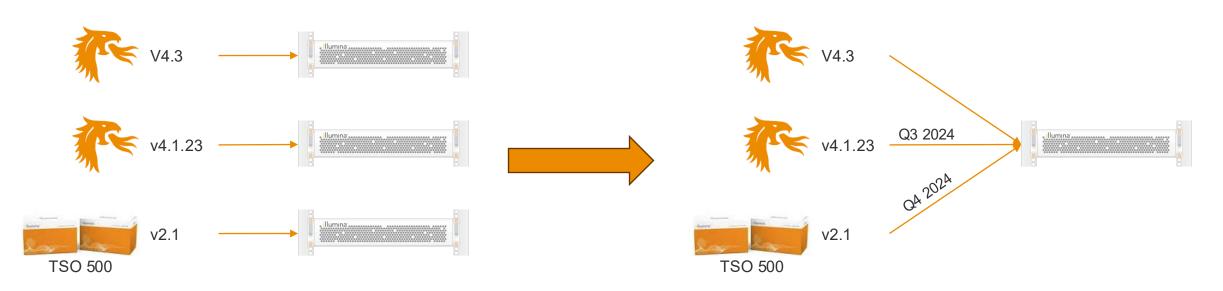


New DRAGEN Report tool

Generate comprehensive, interactive HTML reports from DRAGEN's output files

Flexible deployment options with standalone docker image

- Generate reports without re-running a whole workflow
- Mix and match samples from across workflows into one report
- Supports current features and new callers in DRAGEN v4.3
- Drop-in Replacement for FastQC / MultiQC



Coming soon – multi-version management on DRAGEN Server

Current – one DRAGEN version on one DRAGEN server at a time

Future – multiple versions on each DRAGEN Server

- New DRAGEN installer allows simultaneous hosting of DRAGEN software v4.3 and later
- Backward compatibility with previous versions coming soon*

^{*} Requires re-installation of current DRAGEN software using new installers

