機械器具17 血液検査用器具 その他の医用検体検査装置

高度管理医療機器

遺伝子変異解析セット(がんゲノムプロファイリング検査用) JMDNコード:60943013

TruSight Oncology Comprehensive パネルシステム

【警告】

本品による検査を実施する際には、関連する指針 等に提示される施設要件を満たすことを確認すると ともに、関連学会が作成したガイドライン等の最新 の情報を参考にすること。

【形状・構造及び原理等】

本品は、「TruSight Oncology Comprehensive 解析プログラム」、及び「TruSight Oncology Comprehensive キット」より構成されるコンビネーション医療機器である。

本品の構成品

7710 17700
販売名
TruSight Oncology Comprehensive 解析プログラム
TruSight Oncology Comprehensive キット

<TruSight Oncology Comprehensive 解析プログラム>

本品プログラムは、USBドライブで提供され、NextSeqTM 550Dx システムにインストールされ、遺伝子異常を解析、解釈し、報告する機能を持つ。本品プログラムの入力データは NextSeq 550Dx システムからBCLファイルとして受け取り、解析される。出力ファイルはPDFの最終報告書として出力される。(付帯情報としてJSONファイルとLowDepth Reportが出力される)

<TruSight Oncology Comprehensive キット>

本キットは次の試薬により構成され、NextSeq 550Dx システムによる解析用のライブラリ調製のために使用する。なお、RNAならびにDNAのコントロール試薬は、本品試薬キットとは別梱包で供給される。

試薬名	構成
TruSight Oncology Comp	First Strand Synthesis Mix (FSM)
RNA Library Prep (1/8)	Second Strand Mix (SSM)
	Elution Primer Frag Mix (EPH3)
	Reverse Transcriptase (RVT)
TruSight Oncology Comp	End Repair A-tailing A (ERA1-A)
Library Prep (2/8) (凍結)	End Repair A-tailing B (ERA1-B)
	Adapter Ligation Buffer 1 (ALB1)
	• DNA Ligase 3 (LIG3)
	Short Universal Adapters 1 (SUA1)
	UMI Adapters v1 (UMI)
	Stop Ligation Buffer (STL)
	Enhanced PCR Mix (EPM)
TruSight Oncology Comp	Resuspension Buffer (RSB)
Library Prep (3/8) (冷蔵)	Sample Purification Beads (SPB)
	TE Buffer (TEB)
TruSight Oncology Comp	• UP01
UP Index Primers (4/8)	• UP02
	• UP03
	• UP04
	• UP05
	• UP06
	• UP07
	• UP08
	• UP09
	• UP10
	• UP11
	• UP12
	• UP13
	• UP14
	• UP15

試薬名	構成
	• UP16
TruSight Oncology Comp CP Index Primers (5/8)	• CP01 • CP02 • CP03 • CP04 • CP05 • CP06 • CP07 • CP08 • CP09 • CP10 • CP11 • CP12 • CP13
TruSight Oncology Comp	 CP15 CP16 Target Capture Buffer 1 (TCB1)
Enrichment (6/8) (冷蔵)	Streptavidin Mag Beads (SMB) NaOH (HP3) Elute Target Buffer 2 (ET2) Library Normalization Beads 1 (LNB1) Library Normalization Wash 1 (LNW1) Library Normalization Storage Buffer 1 (LNS1) Resuspension Buffer (RSB) Sample Purification Beads (SPB)
TruSight Oncology Comp Enrichment (7/8) (凍結)	 Target Capture Additives 1 (TCA1) Enhanced Enrichment Wash (EEW) Enrichment Elution 2 (EE2) Enhanced PCR Mix (EPM) PCR Primer Cocktail 3 (PPC3) Library Normalization Additives 1 (LNA1) PhiX Internal Control (PX3)
TruSight Oncology Comp Content Set (8/8)	 Oncology RNA Probe Pool 1 (OPR1) Oncology DNA Probe Pool 2 (OPD2)
TruSight Oncology RNA Control	Oncology RNA Control
TruSight Oncology DNA Control	Oncology DNA Control

原理

本品は、悪性固形腫瘍を有するがん患者から摘出された腫瘍 組織のホルマリン固定パラフィン包埋(Formalin-fixed Paraffinembedded,以下、FFPE)標本から抽出した核酸を検体として DNAライブラリを調製し、NextSeq 550Dx システムを用いた次 世代シーケンス法により、517のがん関連遺伝子について変異を 検出する試薬と解析用ソフトウェアとの組合せ製品である。

本品を用いることで、DNA検体からは一塩基変異(Single Nucleotide Variant, 以下、SNV)、多塩基変異(Multiple Nucleotide Variant, 以下、MNV)、挿入・欠失(Insertion, Deletion, 以下、Indel)を含むSmall DNA Variant、遺伝子増幅(Copy Number Variation,以下、CNV)、RNA検体からは融合遺伝子(Fusion)、スプライス・バリアント(Splice Variant)などの遺伝子変異タイプが検出できる。

本品の解析対象遺伝子 S = Small DNA Variant (517), A = Copy Number Variation (2), F = Fusion (23), Sp = Splice Variant (2)

No. 講話子		г-	変	1 (23),	Sp = Splice	変 varia	int (2)		変
2 ABL2 8 177 FGFR4 8 122 PBRMI 8 3 ABRAXAS 8 178 PHA 8 353 PDCDIL 8 4 ACVRI 8 179 PLCN 8 354 PDCDIL 8 5 ACVRIB 8 180 PLII 8 355 PDGFRA 8 6 ADGRA2 8 181 PLIT 8 356 PDGFRA 8 7 AKT1 8 182 PLT3 8 356 PDGFRA 8 8 AKT2 8 182 PLT3 8 357 PDK1 8 9 AKT3 8 182 PLT3 8 359 PDR1 8 10 AKT3 8 182 PLT3 8 359 PDR1 8 11 ALK 8 182 POXA1 8 359 PDR1 8 11 ALK 8 18 POXA1 8 361 PH3C2B	No.	遺伝子	異タイ	No.	遺伝子	異タイ	No.	遺伝子	異タイ
3 ABRAXAS 8 178 FH 8 353 PDCDIL 8 4 ACVRIB 8 179 FLCN 8 354 PDCDIL 8 5 ACVRIB 8 180 FLII 8 355 PDGFRA 8 6 ADGRA2 8 181 FLTI 8 356 PDGFRA 8 7 AKT1 8 182 FLT3 8 357 PDK1 8 8 AKT2 8 183 FLT4 8 358 PDPK1 8 9 AKT3 8 184 FOXL1 8 359 PDR 8 10 ALK 8 185 FOXL1 8 360 PH66 8 11 ALOX12B 8 186 FOXL1 8 361 PH3C2B 8 12 AMERI 8 187 FOXPL1 8 361 PH3C2B 8	1	ABL1	S	176	FGFR3	S, F	351	PAX8	S
3 1 S 178 FH S 353 PDCD1 S 4 ACVRI S 179 FLCN S 354 PDCD1L S 5 ACVRIB S 180 FLII S 356 PDGFRB S 6 ADGRA2 S 181 FLTI S 356 PDGFRB S 7 AKT1 S 182 FLT3 S 357 PDK1 S 8 AKT2 S 183 FLT4 S 358 PDPK1 S 9 AKT3 S 184 FOXAL S 359 PGR S 10 ALK S,F 185 FOXAL S 360 PHF6 S 11 ALOX12B S 186 FOXAL S 361 PHG2CB S 11 ALCX12B S 188 FRS2 S 363 PHS3CB S	2	ABL2	S	177	FGFR4	S	352	PBRM1	S
4 ACVRIB S 179 FLCN S 354 G2 S 5 ACVRIB S 180 FLII S 355 PDGFRA S 6 ADGRA2 S 181 FLT1 S 356 PDGFRB S 7 AKT1 S 182 FLT3 S 357 PDK1 S 8 AKT2 S 183 FLT4 S 358 PDFK1 S 9 AKT3 S 184 FOXA1 S 360 PHFG S 10 ALK S,F 185 FOXL2 S 360 PHFG S 11 ALOX12B S 186 FOXD1 S 361 PHOX2B S 11 ALKARI S 188 FRS2 S 363 PHK3CB S 13 APC S 199 FUBPI S 366 PHK3CB S </td <td>3</td> <td></td> <td>S</td> <td>178</td> <td>FH</td> <td>S</td> <td>353</td> <td>PDCD1</td> <td>S</td>	3		S	178	FH	S	353	PDCD1	S
ADGRA2 S 181 FLT1 S 356 PDGFRB S 7 AKT1 S 182 FLT3 S 357 PDK1 S 8 AKT2 S 183 FLT4 S 358 PDPK1 S 9 AKT3 S 184 FOXA1 S 360 PHF6 S 10 ALK S,F 185 FOXL2 S 360 PHF6 S 11 ALOX12B S 186 FOXD1 S 361 PHOX2B S 12 AMERI S 187 FOXD1 S 361 PHX3CB S 13 ANKRD11 S 188 FRS2 S 363 PHX3CB S 14 ANKRD26 S 189 FUBP1 S 364 PHX3CB S 15 APC S 191 GABRA6 S 366 PHX3CB S <	4	ACVR1	S	179	FLCN	S	354		S
7 AKT1 S 182 FLT3 S 357 PDK1 S 8 AKT2 S 183 FLT4 S 358 PDPK1 S 9 AKT3 S 184 FOXA1 S 359 PGR S 10 ALK S,F 185 FOXA1 S 360 PH6 S 11 ALOX12B S 186 FOXO1 S 361 PH0X2B S 12 AMERI S 187 FOXPI S 362 PHX3CB S 13 ANKRD11 S 188 FRS2 S 363 PHX3CB S 14 ANKRD26 S 189 FUBPI S 364 PHX3C3 S 15 APC S 190 FYN S 365 PHX3CA S 16 AR S 191 GABA6 S 366 PHX3CB	5	ACVR1B	S	180	FLI1	S	355	PDGFRA	S
8 AKT2 S 183 FLT4 S 358 PDFK1 S 9 AKT3 S 184 FOXAL1 S 359 PGR S 10 ALK S, F 185 FOXL2 S 360 PHF6 S 11 ALOX12B S 186 FOXD1 S 361 PHOX2B S 12 AMER1 S 187 FOXD1 S 362 PHSC2B S 13 ANKRD11 S 188 FRS2 S 363 PHSC2B S 14 ANKRD26 S 189 FUBP1 S 364 PHSC3C S 15 APC S 190 FYN S 366 PHSCA S 16 AR S 191 GABRA6 S 367 PHSCA S 18 ARFP1 S 192 GATA1 S 369 PHS3C	6	ADGRA2	S	181	FLT1	S	356	PDGFRB	S
9 AKT3 S 184 FOXA1 S 359 PGR S 10 ALK S, F 185 FOXL2 S 360 PHF6 S 11 ALOX12B S 186 FOXO1 S 361 PHOX2B S 12 AMERI S 187 FOXPI S 362 PHX3C2B S 13 ANKRD11 S 188 FRS2 S 363 PHX3C2B S 14 ANKRD16 S 189 FUBPI S 364 PHX3C3 S 15 APC S 190 FYN S 365 PHX3C3 S 16 AR S 191 GABRA6 S 366 PHX3CA S 17 ARAF S 192 GATA1 S 367 PHX3CD S 18 ARFPI S 193 GATA2 S 368 PHX3CD	7	AKT1	S	182	FLT3	S	357	PDK1	S
10 ALK S, F 185 FOXL2 S 360 PHF6 S 11 ALOX12B S 186 FOXO1 S 361 PHOX2B S 12 AMER1 S 187 FOXP1 S 362 PIK3C2B S 13 ANKRD11 S 188 FRS2 S 363 PIK3C2G S 14 ANKRD26 S 189 FUBP1 S 364 PIK3C3 S 15 APC S 190 FYN S 365 PIK3CA S 16 AR S 191 GABRA6 S 366 PIK3CB S 17 ARAF S 192 GATA1 S 367 PIK3CD S 18 ARFPI S 193 GATA2 S 368 PIK3CD S 19 ARIDIA S 194 GATA3 S 370 PIK3R	8	AKT2	S	183	FLT4	S	358	PDPK1	S
11 ALOX12B S 186 FOXO1 S 361 PHOX2B S 12 AMERI S 187 FOXPI S 362 PIK3C2B S 13 ANKRD11 S 188 FRS2 S 363 PIK3C2G S 14 ANKRD26 S 189 FUBPI S 364 PIK3C3 S 15 APC S 190 FYN S 365 PIK3CA S 16 AR S 191 GABRA6 S 366 PIK3CB S 17 ARAF S 192 GATA1 S 367 PIK3CD S 18 ARFRPI S 193 GATA2 S 368 PIK3CD S 19 ARIDIA S 194 GATA3 S 369 PIK3R1 S 20 ARIDIB S 195 GATA4 S 370 PI	9	AKT3	S	184	FOXA1	S	359	PGR	S
12 AMER1 S 187 FOXP1 S 362 PIK3C2B S 13 ANKRD11 S 188 FRS2 S 363 PIK3C2G S 14 ANKRD26 S 189 FUBP1 S 364 PIK3C3 S 15 APC S 190 FYN S 365 PIK3CA S 16 AR S 191 GABRA6 S 366 PIK3CB S 17 ARAF S 192 GATA1 S 366 PIK3CB S 18 ARFRP1 S 193 GATA2 S 368 PIK3CD S 19 ARID1A S 194 GATA3 S 369 PIK3R1 S 20 ARID1B S 195 GATA4 S 370 PIK3R2 S 21 ARID2 S 196 GATA6 S 371 PIK3	10	ALK	S, F	185	FOXL2	S	360	PHF6	S
13 ANKRD11 S 188 FRS2 S 363 PIK3C2G S 14 ANKRD26 S 189 FUBP1 S 364 PIK3C3 S 15 APC S 190 FYN S 365 PIK3CA S 16 AR S 191 GABRA6 S 366 PIK3CB S 17 ARAF S 192 GATA1 S 367 PIK3CD S 18 ARFRP1 S 193 GATA2 S 368 PIK3CD S 19 ARID1A S 194 GATA3 S 369 PIK3R1 S 20 ARID1B S 195 GATA4 S 370 PIK3R2 S 21 ARID2 S 196 GATA6 S 371 PIK3R3 S 22 ARID5B S 197 GEN1 S 372 PIM1<	11	ALOX12B	S	186	FOXO1	S	361	PHOX2B	S
14 ANKRD26 S 189 FUBP1 S 364 PIK3C3 S 15 APC S 190 FYN S 365 PIK3CA S 16 AR S 191 GABRA6 S 366 PIK3CB S 17 ARAF S 192 GATA1 S 367 PIK3CD S 18 ARFRP1 S 193 GATA2 S 368 PIK3CG S 19 ARID1A S 194 GATA3 S 369 PIK3R1 S 20 ARID1B S 195 GATA4 S 370 PIK3R2 S 21 ARID2 S 196 GATA6 S 371 PIK3R3 S 22 ARID5B S 197 GEN1 S 372 PIM1 S 23 ASXL1 S 198 GID4 S 373 PLCG2	12	AMER1	S	187	FOXP1	S	362	PIK3C2B	S
15 APC S 190 FYN S 365 PIK3CA S 16 AR S 191 GABRA6 S 366 PIK3CB S 17 ARAF S 192 GATA1 S 367 PIK3CD S 18 ARFRP1 S 193 GATA2 S 368 PIK3CG S 19 ARID1A S 194 GATA3 S 369 PIK3R1 S 20 ARID1B S 195 GATA4 S 370 PIK3R2 S 21 ARID2 S 196 GATA6 S 371 PIK3R2 S 21 ARID5B S 197 GEN1 S 372 PIM1 S 23 ASXL1 S 198 GID4 S 373 PLCG2 S 24 ASXL2 S 199 GLI1 S 374 PLK2	13	ANKRD11	S	188	FRS2	S	363	PIK3C2G	S
16 AR S 191 GABRA6 S 366 PIK3CB S 17 ARAF S 192 GATA1 S 367 PIK3CD S 18 ARFRP1 S 193 GATA2 S 368 PIK3CG S 19 ARID1A S 194 GATA3 S 369 PIK3R1 S 20 ARID1B S 195 GATA4 S 370 PIK3R2 S 21 ARID2 S 196 GATA6 S 371 PIK3R2 S 21 ARID5B S 196 GATA6 S 371 PIK3R2 S 22 ARID5B S 197 GEN1 S 372 PIM1 S 23 ASXL1 S 198 GID4 S 373 PLCG2 S 24 ASXL2 S 199 GL11 S 374 PLK2	14	ANKRD26	S	189	FUBP1	S	364	PIK3C3	S
17 ARAF S 192 GATA1 S 367 PIK3CD S 18 ARFP1 S 193 GATA2 S 368 PIK3CG S 19 ARID1A S 194 GATA3 S 369 PIK3R1 S 20 ARID1B S 195 GATA4 S 370 PIK3R2 S 21 ARID2 S 196 GATA6 S 371 PIK3R2 S 22 ARID5B S 197 GEN1 S 372 PIM1 S 23 ASXL1 S 198 GID4 S 373 PLCG2 S 24 ASXL2 S 199 GLI1 S 374 PLK2 S 25 ATM S 200 GNA11 S 375 PMAIP1 S 26 ATR S 201 GNA13 S 376 PMS1	15	APC	S	190	FYN	S	365	PIK3CA	S
18 ARFRP1 S 193 GATA2 S 368 PIK3CG S 19 ARID1A S 194 GATA3 S 369 PIK3R1 S 20 ARID1B S 195 GATA4 S 370 PIK3R2 S 21 ARID2 S 196 GATA6 S 371 PIK3R3 S 22 ARID5B S 197 GEN1 S 372 PIM1 S 23 ASXL1 S 198 GID4 S 373 PLCG2 S 24 ASXL2 S 199 GL11 S 374 PLK2 S 25 ATM S 200 GNA11 S 375 PMAIP1 S 26 ATR S 201 GNA13 S 376 PMS1 S 27 ATRX S 202 GNAQ S 377 PMS2	16	AR	S	191	GABRA6	S	366	PIK3CB	S
19 ARID1A S 194 GATA3 S 369 PIK3R1 S 20 ARID1B S 195 GATA4 S 370 PIK3R2 S 21 ARID2 S 196 GATA6 S 371 PIK3R3 S 22 ARID5B S 197 GEN1 S 372 PIM1 S 23 ASXL1 S 198 GID4 S 373 PLCG2 S 24 ASXL2 S 199 GL11 S 374 PLK2 S 25 ATM S 200 GNA11 S 375 PMAIP1 S 26 ATR S 201 GNA13 S 376 PMS1 S 27 ATRX S 202 GNAQ S 377 PMS2 S 28 AURKA S 203 GNAS S 378 PNRC1 <t< td=""><td>17</td><td>ARAF</td><td>S</td><td>192</td><td>GATA1</td><td>S</td><td>367</td><td>PIK3CD</td><td>S</td></t<>	17	ARAF	S	192	GATA1	S	367	PIK3CD	S
20 ARID1B S 195 GATA4 S 370 PIK3R2 S 21 ARID2 S 196 GATA6 S 371 PIK3R3 S 22 ARID5B S 197 GEN1 S 372 PIM1 S 23 ASXL1 S 198 GID4 S 373 PLCG2 S 24 ASXL2 S 199 GLI1 S 374 PLK2 S 25 ATM S 200 GNA11 S 375 PMAIP1 S 26 ATR S 201 GNA13 S 376 PMS1 S 27 ATRX S 202 GNAQ S 377 PMS2 S 28 AURKA S 203 GNAS S 378 PNRC1 S	18	ARFRP1	S	193	GATA2	S	368	PIK3CG	S
21 ARID2 S 196 GATA6 S 371 PIK3R3 S 22 ARID5B S 197 GEN1 S 372 PIM1 S 23 ASXL1 S 198 GID4 S 373 PLCG2 S 24 ASXL2 S 199 GLI1 S 374 PLK2 S 25 ATM S 200 GNA11 S 375 PMAIP1 S 26 ATR S 201 GNA13 S 376 PMS1 S 27 ATRX S 202 GNAQ S 377 PMS2 S 28 AURKA S 203 GNAS S 378 PNRC1 S	19	ARID1A	S	194	GATA3	S	369	PIK3R1	S
22 ARID5B S 197 GEN1 S 372 PIM1 S 23 ASXL1 S 198 GID4 S 373 PLCG2 S 24 ASXL2 S 199 GLI1 S 374 PLK2 S 25 ATM S 200 GNA11 S 375 PMAIP1 S 26 ATR S 201 GNA13 S 376 PMS1 S 27 ATRX S 202 GNAQ S 377 PMS2 S 28 AURKA S 203 GNAS S 378 PNRC1 S	20	ARID1B	s	195	GATA4	S	370	PIK3R2	S
23 ASXL1 S 198 GID4 S 373 PLCG2 S 24 ASXL2 S 199 GLI1 S 374 PLK2 S 25 ATM S 200 GNA11 S 375 PMAIP1 S 26 ATR S 201 GNA13 S 376 PMS1 S 27 ATRX S 202 GNAQ S 377 PMS2 S 28 AURKA S 203 GNAS S 378 PNRC1 S	21	ARID2	s	196	GATA6	S	371	PIK3R3	S
24 ASXL2 S 199 GLI1 S 374 PLK2 S 25 ATM S 200 GNA11 S 375 PMAIP1 S 26 ATR S 201 GNA13 S 376 PMS1 S 27 ATRX S 202 GNAQ S 377 PMS2 S 28 AURKA S 203 GNAS S 378 PNRC1 S	22	ARID5B	s	197	GEN1	S	372	PIM1	S
25 ATM S 200 GNA11 S 375 PMAIP1 S 26 ATR S 201 GNA13 S 376 PMS1 S 27 ATRX S 202 GNAQ S 377 PMS2 S 28 AURKA S 203 GNAS S 378 PNRC1 S	23	ASXL1	S	198	GID4	S	373	PLCG2	S
26 ATR S 201 GNA13 S 376 PMS1 S 27 ATRX S 202 GNAQ S 377 PMS2 S 28 AURKA S 203 GNAS S 378 PNRC1 S	24	ASXL2	S	199	GLI1	S	374	PLK2	S
27 ATRX S 202 GNAQ S 377 PMS2 S 28 AURKA S 203 GNAS S 378 PNRC1 S	25	ATM	S	200	GNA11	S	375	PMAIP1	S
28 AURKA S 203 GNAS S 378 PNRC1 S	26	ATR	S	201	GNA13	S	376	PMS1	S
	27	ATRX	S	202	GNAQ	S	377	PMS2	S
29 AURKB S 204 GPS2 S 379 POLD1 S	28	AURKA	S	203	GNAS	S	378	PNRC1	S
· · · · · · · · · · · · · · · · · · ·	29	AURKB	s	204	GPS2	s	379	POLD1	s

		変異			変異			変異
No.	遺伝子	タイプ	No.	遺伝子	タイプ	No.	遺伝子	タイプ
30	AXIN1	s	205	GREM1	S	380	POLE	S
31	AXIN2	s	206	GRIN2A	s	381	PPARG	s
32	AXL	S, F	207	GRM3	S	382	PPM1D	S
33	B2M	s	208	GSK3B	s	383	PPP2R1A	s
34	BAP1	S	209	H3F3A	S	384	PPP2R2A	S
35	BARD1	S	210	H3F3B	S	385	PPP6C	S
36	BBC3	S	211	H3F3C	S	386	PRDM1	S
37	BCL10	S	212	HGF	S	387	PREX2	S
38	BCL2	S, F	213	HIST1H1 C	S	388	PRKAR1 A	S
39	BCL2L1	S	214	HIST1H2 BD	S	389	PRKCI	S
40	BCL2L11	S	215	HIST1H3 A	S	390	PRKDC	S
41	BCL2L2	S	216	HIST1H3 B	S	391	PRKN	S
42	BCL6	S	217	HIST1H3 C	S	392	PRSS8	S
43	BCOR	S	218	HIST1H3 D	S	393	PTCH1	S
44	BCORL1	s	219	HIST1H3 E	s	394	PTEN	s
45	BCR	s	220	HIST1H3 F	s	395	PTPN11	s
46	BIRC3	s	221	HIST1H3 G	s	396	PTPRD	s
47	BLM	s	222	HIST1H3 H	s	397	PTPRS	s
48	BMPR1A	s	223	HIST1H3	s	398	PTPRT	s
49	BRAF	S, F	224	HIST1H3 J	S	399	QKI	S
50	BRCA1	S	225	HIST2H3 A	S	400	RAB35	S
51	BRCA2	S	226	HIST2H3 C	S	401	RAC1	S
52	BRD4	S	227	HIST2H3 D	S	402	RAD21	S
53	BRIP1	S	228	HIST3H3	S	403	RAD50	S
54	BTG1	S	229	HNF1A	S	404	RAD51	S
55	BTK	S	230	HNRNPK	S	405	RAD51B	S
56	CALR	S	231	HOXB13	S	406	RAD51C	S
57	CARD11	S	232	HRAS	S	407	RAD51D	S
58	CASP8	S	233	HSD3B1	S	408	RAD52	S
59	CBFB	S	234	HSP90A A1	S	409	RAD54L	S
60	CBL	S	235	ICOSLG	S	410	RAF1	S, F

No.	遺伝子	変異タイプ	No.	遺伝子	変異タイプ	No.	遺伝子	変異タイプ
61	CCND1	S	236	ID3	S	411	RANBP2	S
62	CCND2	S	237	IDH1	S	412	RARA	S
63	CCND3	S	238	IDH2	S	413	RASA1	S
64	CCNE1	S	239	IFNGR1	S	414	RB1	S
65	CD274	S	240	IGF1	S	415	RBM10	s
66	CD276	s	241	IGF1R	S	416	RECQL4	S
67	CD74	S	242	IGF2	S	417	REL	S
68	CD79A	S	243	IKBKE	S	418	RET	S, F
69	CD79B	S	244	IKZF1	S	419	RHEB	s
70	CDC73	S	245	IL10	S	420	RHOA	S
71	CDH1	S	246	IL7R	S	421	RICTOR	s
72	CDK12	s	247	INHA	S	422	RIT1	s
73	CDK4	s	248	INHBA	S	423	RNF43	S
74	CDK6	s	249	INPP4A	S	424	ROS1	S, F
75	CDK8	s	250	INPP4B	S	425	RPS6KA4	S
76	CDKN1A	S	251	INSR	S	426	RPS6KB1	S
77	CDKN1B	S	252	IRF2	S	427	RPS6KB2	S
78	CDKN2A	s	253	IRF4	S	428	RPTOR	s
79	CDKN2B	s	254	IRS1	s	429	RUNX1	s
80	CDKN2C	s	255	IRS2	S	430	RUNX1T	S
81	CEBPA	s	256	JAK1	S	431	RYBP	S
82	CENPA	s	257	JAK2	S	432	SDHA	S
83	CHD2	s	258	JAK3	S	433	SDHAF2	S
84	CHD4	S	259	JUN	S	434	SDHB	s
85	CHEK1	S	260	KAT6A	S	435	SDHC	s
86	CHEK2	S	261	KDM5A	S	436	SDHD	S
87	CIC	S	262	KDM5C	S	437	SETBP1	S
88	COP1	S	263	KDM6A	S	438	SETD2	S
89	CREBBP	S	264	KDR	S	439	SF3B1	s
90	CRKL	s	265	KEAP1	s	440	SH2B3	s
91	CRLF2	S	266	KEL	S	441	SH2D1A	S

No.	遺伝子	変異タイプ	No.	遺伝子	変異タイプ	No.	遺伝子	変異タイプ
92	CSF1R	S	267	KIF5B	S, F	442	SHQ1	S
93	CSF3R	S	268	KIT	S	443	SLIT2	S
94	CSNK1A1	S	269	KLF4	S	444	SLX4	S
95	CTCF	S	270	KLHL6	S	445	SMAD2	S
96	CTLA4	S	271	KMT2A	S	446	SMAD3	S
97	CTNNA1	S	272	KRAS	S	447	SMAD4	S
98	CTNNB1	S	273	LAMP1	S	448	SMARCA 4	S
99	CUL3	S	274	LATS1	S	449	SMARCB 1	S
100	CUX1	S	275	LATS2	S	450	SMARCD 1	S
101	CXCR4	S	276	LMO1	S	451	SMC1A	S
102	CYLD	S	277	LRP1B	S	452	SMC3	S
103	DAXX	S	278	LYN	s	453	SMO	s
104	DCUN1D1	S	279	LZTR1	S	454	SNCAIP	S
105	DDR2	S	280	MAGI2	S	455	SOCS1	S
106	DDX41	S	281	MALT1	s	456	SOX10	s
107	DHX15	S	282	MAP2K1	s	457	SOX17	s
108	DICER1	S	283	MAP2K2	S	458	SOX2	S
109	DIS3	S	284	MAP2K4	S	459	SOX9	S
110	DNAJB1	S	285	MAP3K1	S	460	SPEN	S
111	DNMT1	S	286	MAP3K1	S	461	SPOP	S
112	DNMT3A	S	287	MAP3K1	S	462	SPTA1	S
113	DNMT3B	S	288	MAP3K4	S	463	SRC	s
114	DOT1L	S	289	MAPK1	S	464	SRSF2	s
115	E2F3	S	290	MAPK3	S	465	STAG1	s
116	EED	S	291	MAX	S	466	STAG2	S
117	EGFL7	S	292	MCL1	S	467	STAT3	S
118	EGFR	S, F,	293	MDC1	S	468	STAT4	S
119	EIF1AX	S	294	MDM2	S	469	STAT5A	S
120	EIF4A2	S	295	MDM4	S	470	STAT5B	S
121	EIF4E	S	296	MED12	S	471	STK11	S
122	ELOC	s	297	MEF2B	s	472	STK40	s

		変			変			変
No.	遺伝子	異 タ イ プ	No.	遺伝子	4 異 タ イ プ	No.	遺伝子	4 異 タ イ プ
123	EML4	S, F	298	MEN1	S	473	SUFU	S
124	EMSY	S	299	MET	S, A, Sp	474	SUZ12	S
125	EP300	s	300	MGA	S	475	SYK	S
126	EPCAM	s	301	MITF	S	476	TAF1	S
127	ЕРНА3	S	302	MLH1	S	477	TBX3	S
128	EPHA5	S	303	MLLT3	S	478	TCF3	S
129	EPHA7	S	304	MPL	S	479	TCF7L2	S
130	EPHB1	S	305	MRE11	S	480	TERC	S
131	ERBB2	S, A	306	MSH2	S	481	TERT	S
132	ERBB3	S	307	MSH3	S	482	TET1	S
133	ERBB4	S	308	MSH6	S	483	TET2	S
134	ERCC1	S	309	MST1	S	484	TFE3	S
135	ERCC2	S	310	MST1R	S	485	TFRC	S
136	ERCC3	S	311	MTOR	S	486	TGFBR1	S
137	ERCC4	S	312	MUTYH	S	487	TGFBR2	S
138	ERCC5	s	313	MYB	S	488	TMEM12 7	S
139	ERG	S, F	314	MYC	S	489	TMPRSS 2	S, F
140	ERRFI1	S	315	MYCL	S	490	TNFAIP3	S
141	ESR1	S, F	316	MYCN	S	491	TNFRSF1	S
142	ETS1	S	317	MYD88	S	492	TOP1	S
143	ETV1	S, F	318	MYOD1	S	493	TOP2A	S
144	ETV4	S, F	319	NAB2	S	494	TP53	S
145	ETV5	S	320	NBN	S	495	TP63	S
146	ETV6	S	321	NCOA3	S	496	TRAF2	S
147	EWSR1	S	322	NCOR1	S	497	TRAF7	S
148	EZH2	S	323	NEGR1	S	498	TSC1	s
149	FAM46C	S	324	NF1	S	499	TSC2	S
150	FANCA	S	325	NF2	S	500	TSHR	S
151	FANCC	S	326	NFE2L2	S	501	U2AF1	S
152	FANCD2	S	327	NFKBIA	S	502	VEGFA	S
153	FANCE	S	328	NKX2-1	S	503	VHL	S

No.	遺伝子	変異タイプ	No.	遺伝子	変異タイプ	No.	遺伝子	変異タイプ
154	FANCF	s	329	NKX3-1	S	504	VTCN1	S
155	FANCG	S	330	NOTCH1	S	505	WISP3	S
156	FANCI	S	331	NOTCH2	S	506	WT1	S
157	FANCL	S	332	NOTCH3	S	507	XIAP	S
158	FAS	S	333	NOTCH4	S	508	XPO1	S
159	FAT1	S	334	NPM1	S	509	XRCC2	S
160	FBXW7	S	335	NRAS	S	510	YAP1	S
161	FGF1	S	336	NRG1	S, F	511	YES1	S
162	FGF10	s	337	NSD1	S	512	ZBTB2	S
163	FGF14	S	338	NTRK1	S, F	513	ZBTB7A	S
164	FGF19	S	339	NTRK2	S, F	514	ZFHX3	S
165	FGF2	S	340	NTRK3	S, F	515	ZNF217	S
166	FGF23	S	341	NUP93	S	516	ZNF703	S
167	FGF3	S	342	NUTM1	S	517	ZRSR2	S
168	FGF4	S	343	PAK1	S			
169	FGF5	S	344	PAK3	S			
170	FGF6	S	345	PAK5	S			
171	FGF7	S	346	PALB2	S			
172	FGF8	S	347	PARP1	S			
173	FGF9	S	348	PAX3	S, F			
174	FGFR1	S, F	349	PAX5	S			
175	FGFR2	S, F	350	PAX7	S			

判定基準

以下に示す測定品質に合格した検体のバリアントのみが本システムによって自動で判定され、最終報告書に表示される。

<システム適合性に関する規格>

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ンパノム過日氏に関する気情と							
測定	基準	規格値						
品質								
ラン	PCT_PF_READS	≥ 80.0%						
	PCT_Q30_R1	$\geq 80.0\%$						
	PCT_Q30_R2	$\geq 80.0\%$						
DNA	CONTAMINATION_SCORE,	≤3106 又						
ライ	CONTAMINATION_P_VALUE	は、						
ブラ		>3106及びp						
IJ		値≦0.049						
	MEDIAN_INSERT_SIZE	≥ 70 bp						
	MEDIAN_EXON_COVERAGE	≥ 150						
	PCT EXON 50X	≥ 90.0%						

測定	基準	規格値
品質		
	COVERAGE_MAD	≤ 0.210
	MEDIAN_BIN_COUNT_CNV_	≥ 1.0
	TARGET	
RNA	MEDIAN_CV_GENE_500X	≤ 0.93
ライ	MEDIAN_INSERT_SIZE	≥ 80 bp
ブラ	TOTAL_ON_TARGET_READS	≥ 9,000,000
リ		
陽性	DNA External Control	24種類のバ
コン		リアントの
トロ		うち23種類
ール		が検出され
		る
	RNA External Control	13種類のバ
		リアントの
		うち12種類
		が検出され
		る
陰性	DNA	≤ 8
コン	MEDIAN_EXON_COVERAGE	
トロ	RNA	≤ 1
ール	GENE ABOVE MEDIAN CUTOFF	

【使用目的又は効果】

本品は、固形がん患者を対象とした腫瘍組織の包括的なゲ ノムプロファイルを取得する。

〈使用目的又は効果に関連する使用上の注意〉

本品による包括的ゲノムプロファイリング検査の出力結果 に基づく診断や治療方針決定においては、がんゲノム医療に 精通した医師が、最新の医学知見に基づき、治療歴、他の関 連する検査結果、臨床症状とあわせて、総合的に判断するこ と。

【使用方法等】

TruSight Oncology Comprehensive 解析プログラム 組み合わせて使用する医療機器が指定されている。本品プログラムは、NextSeq 550Dx システム上で使用する。コンビネーション医療機器として承認された本品試薬を使用してDNAライブラリ調製を行い、シーケンス解析を行う。本品プログラムを用いて解析を行い、解析結果を含むレポートを出力する。

組み合わせて使用する医療機器

本品は「NextSeq 550Dx システム(製造販売届出番号: 13B1X10303000001) と組み合わせて使用する。

TruSight Oncology Comprehensive + y

<試薬の調製方法>

特に指定がない場合は、氷上で融解後、ボルテックスで混合してから使用する。

FFPE標本からの核酸抽出

FFPE標本組織は、「ゲノム研究用・診療用病理組織検体取扱い規定」(日本病理学会)に記載のホルマリン固定条件等を遵守された検体を用いる。

汎用の核酸抽出キットを用いて、腫瘍組織のFFPE標本から ゲノムDNA及びTotal RNAを抽出する。抽出後、DNA及び RNAを定量し、それぞれ40ngをライブラリ調製に供する。 本システムには最低20%の腫瘍含有量(領域別)が必要であ る。

ライブラリ調製方法

ゲノムDNAについては、DNA断片化用超音波発生装置を用いて断片化を行う。Total RNA 40ngについては逆転写反応等により二本鎖cDNAへと変換する。それぞれ得られたDNAに対してシーケンシングのためのユニバーサルアダプターとしてP5及びP7インデックス配列を付加することで、フローセル上で断片を補足できるようにしたものを、DNAライブラリとする。なお、

インデックス配列には個々の検体を識別できるユニークな配列が 含まれる。

その後、以下の(1)から(5)までの工程を経て、標的遺伝子のDNAライブラリのみをハイブリッドキャプチャー法で特異的に濃縮する。

- (1) 標的遺伝子に、相補的な配列をもつビオチン化プローブと DNAライブラリをハイブリダイズさせる。
- (2) ストレプトアビジン付加磁気ビーズを用いて、プローブがハイブリダイズしたDNAライブラリとフリーのDNAライブラリをB/F分離する。
- (3) プローブがハイブリダイズしたDNAライブラリを洗浄し、 PCRにより増幅する。
- (4) 増幅されたDNAライブラリを、磁気ビーズを用いてノーマライズする。
- (5) 各 DNA ライブラリを等モル量でプールし、DNA シーケンス に適切な濃度に希釈する。

(cDNA 合成)

(CDIVIT [] //X/								
変性と	RNAアニール	反応量:17μ	1					
RNA)								
RNA	試料	40ng	40ng					
第一釗	貨cDNA合成(1	反応量:25μ	1					
FSM-	-RVT マスター							
成分	3 RNA	8 RNA	16 RNA	24 RNA				
	試料	試料	試料	試料				
FSM	27µl	72µl	144µl	216µl				
RVT	3µl	16µl	24μl					
第二針	貨cDNA合成(2	2ndSS)	反応量:50μ	1				

(ゲノム DNA (gDNA) 断片化)

gDNA	40ng

末端修飾及びA テーリング

	断片化さ		50µl					
I	ERA1 マスターミックス							
成分 3 ライブラ 8 ライブ 16 ライブラ 24 ライブラ 48 ライ								
		IJ	ラリ	IJ	IJ	ラリ		
	ERA1-B	26µl	69µl	138µl	207µl	415µl		
ſ	ERA1-A	10µl	27µl	54µl	81µl	161µl		

インデックス PCR

インデックスPCR	反応量: 50μl
-----------	-----------

ハイブリダイゼーション

第一段階	(HYB1)	反応量	: 50µl					
cDNA/gD	NAライブラ	20µl						
ターゲッ	ターゲットキャプチャ用 EE2+HP3 溶出ミックス 1							
成分	3 ライ	24 ライブ	48 ライブ					
	ブラリ	ブラリ	ラリ	ラリ	ラリ			
EE2	85.5µl	228µl	456µl	684µl	1368µl			
HP3	4.5µl	12μ1	24μ1	36µl	72µl			
第二段階	(HYB2)			反応量	: 50µl			
ターゲッ	トキャプチ	ャ用 EE2+I	HP3 溶出ミ	ックス 2				
成分	3 ライ	24 ライブ	48 ライブ					
	ブラリ	ブラリ	ラリ	ラリ	ラリ			
EE2	85.5µl	228µl	456µl	684µl	1368µl			
HP3	4.5µl	12µl	24µl	36µl	72µl			

エンリッチメント

エンリ	ッチメント	(EL-	反応量:50μl			
PCR)				(A) = 1.30 pt		
LNA1+	-LNB1マス	ターミックス	ス			
成分	3 ライ	8 ライ	16 ライ	24 ライ	48 ライ	
	ブラリ	ブラリ	ブラリ	ブラリ	ブラリ	
LNA1	229µl	610µl	1219µl	1829µl	3658µl	
LNB1	41µl	110μ1	221µl	331µl	662µl	
ライブ	ラリノーマ	ライズ用EE2	2+HP3溶出	ミックス		
成分	3 ライ	8 ライ	16 ライ	24 ライ	48 ライ	
	ブラリ	ブラリ	ブラリ	ブラリ	ブラリ	
EE2	114μ1	304μ1	608µl	912μl	1824µl	
HP3	6µl	16µl	32µl	48µl	96µl	

別途必要な器具・器材・資料等

器具 · 器材

- (1) マイクロピペット
- (2) フィルター付きピペットチップ (ヌクレアーゼフリ
- <u>—</u>)
- (3) マイクロチューブ、96 ウェルプレート
- (4) コニカルチューブ (15 mL もしくは 50 mL)
- (5) 96 ディープウェルプレート (MIDI プレート)
- (6) 96 ウェル PCR プレートおよび専用シール
- (7) MIDI プレート用マグネットスタンド(8) ボルテックスミキサー
- (9) プレートシェーカー
- (10) 遠心機 (チューブ用、プレート用)
- (11) DNA 断片化用超音波発生装置
- (12) MIDI プレート用インキュベーター
- (13) PCR 装置
- (14) マイクロチューブ用ヒートブロック
- (15) フルオロメーター (Oubit)

試薬

- (1) DNA/RNA 抽出および精製用試薬
- (2) DNA/RNA 定量用試薬
- (3) エタノール 99.5%以上 (分子生物学用)
- (4) DNase/RNase-free water
- (5) NextSeq 550Dx High-Output Reagent Kit (300 cycles)

操作方法の概略

cDNA クリーンアップ

抽出した RNA 40ng が入った PCR プレートに EPH3 8.5μl を加え、LQ-RNA プログラムの条件で反応させる。

LQ-RNA プログラム:65℃5分

4°C1分

4℃静置

次に、FSM+RVT マスターミックス 8μl を加え、1stSS プログラムの条件で反応させる。

1stSS プログラム: 25℃ 10 分

42℃ 15 分

70℃ 15 分

4℃1分

4℃静置

その後、SSM 25μ l を加え、2ndSS プログラムの条件で反応させる。

2ndSS プログラム:16℃25 分

4°C1分

4℃静置

最後に、SPB 90 μ l を用いて cDNA を精製し、80%EtOH で 2 回洗浄後、cDNA を RSB(22 μ l、30 μ l)で溶出する。

gDNA 断片化

gDNA 40ng を、TEB を用いて 52μ l (最終液量) で調製したものを断片化する。

末端修飾及び A テーリング

各核酸(cDNA/断片化した gDNA) 50μl が入ったプレートに、ERA1 マスターミックス (ERA1-A、ERA1-B) 10μl を加え、30℃ で 30 分インキュベート、次いで 72℃で 20 分インキュベートし、最後に氷上で 5 分静置する。

アダプター付与

末端修復及びA-テーリング反応後、ALBI 60μl、LIG3 5μlを加え、アダプター (試薬: UMI 又はSUAI) をDNA/RNA検体に10μlずつ加え、室温で30分インキュベートした後、STL 5μlを加える。その後、SPB 112μlを用いてアダプター付与したDNA 断片を精製し、80%EtOH 200μlで2回洗浄、RSB 27.5μlで溶出する。

インデックス PCR

アダプター付与したDNA断片に適切なインデックスプライマー(UPxxもしくはCPxx) 5μ lを添加し、EPM 20μ lを加え、インデックスPCR(I-PCR)プログラムの条件で増幅する。これにより、インデックス配列が付与されたcDNA/gDNAライブラリを得る。

I-PCRプログラム:98℃30秒を1サイクル

98℃ 10秒

60℃ 30秒

72℃ 30秒を15サイクル 72℃ 5分を1サイクル

10℃で静置

ハイブリダイゼーション

(第一段階)

PCRプレートで、cDNA/gDNAライブラリ 20μlと各試薬 (TCB1 15μl又はTCA1 10μl) 、プローブ (試薬: OPR1又はOPD2) 5μlを加えた後、HYB1プログラムの条件で反応、ハイブリダイズさせる。

HYB1プログラム:95℃10分

85℃ 2分30秒

75℃ 2分30秒

65℃ 2分30秒

57℃静置 8~24時間

次にSMB 150 μ lを加え、57 $^{\circ}$ Cで25分インキュベートした後、EEW 200 μ lで3回洗浄する(57 $^{\circ}$ C5分インキュベート)。濃縮ライブラリをEE2+HP3溶出ミックス17 μ lを用いて溶出し、ET2 5 μ lで中和する。

(第二段階)

濃縮ライブラリにTCB115 μ l、TCA110 μ lを加え、プローブ(試薬: OPR1又はOPR2)5 μ lを加えた後、HYB2プログラムの条件で反応、ハイブリダイズさせる。

HYB2プログラム:95℃10分

85℃2分30秒 75℃2分30秒

65℃2分30秒

57℃静置 1.5~4時間

次に SMB 150μl を加え、57℃で 25 分インキュベートした後、RSB 200μl で洗浄する。EE2+HP3 溶出ミックス 22μl を用いて溶出し、ET2 5μl で中和する。

エンリッチメント

PCRプレートにPPC3 5μl、EPM 20μlを加え、EL-PCRプログラムの条件で反応させる。

EL-PCRプログラム:98℃30秒 1サイクル

98°C10秒

60°C30秒

72°C30秒を18サイクル

72℃5分を 1サイクル

10℃で静置

次に、SPB 110μ l を用いて精製し、80%EtOH 200μ l で 2 回洗浄後、RSB 32μ l を加えて溶出する。

その後、LNA1+LNB1 マスターミックス 45µl を用いてノーマライズし、LNW1 45µl で 2 回洗浄する。EE2+HP3 溶出ミックス 32µl で溶出し、LNS1 30µl で中和する。

DNAシーケンス(1次解析)

濃縮されたDNAライブラリを、フローセル上でクラスター形成させ、Sequencing by Synthesis Chemistry(以下、SBSケミストリー) 法にてNextSeq 550Dx システム(販売名: NextSeq 550Dx システム、届出番号:13B1X10303000001)上でDNA塩基配列を同定する。

SBSケミストリー法は、可逆的ターミネーター法を用いて、伸長中のDNA鎖に取り込まれる際に、単一の蛍光標識されたデオキシヌクレオチド三リン酸(dNTP)塩基を検出する。各dNTP取り込み後、蛍光色素を画像化して塩基を同定し、蛍光標識とターミネーターを除去することで、次のヌクレオチドの取り込みを可能にする。つまり、4つの可逆的ターミネーター結合dNTPが単一の別々の分子として存在する。ベースコールは、各シーケンシングサイクルの間のシグナル強度測定から直接行われ、シーケンシングによるコール結果となる。各ベースコールに品質スコアが割り当てられている。

シーケンシング

PhiX ControlをHP3、RSBを用いて希釈および変性後、これをDNAライブラリに添加し、NextSeq 550Dx High Output Reagent Kit

v2.5 (300 cycles) でNextSeq 550Dx システムによりシーケンス解析を行う。

シーケンスから解析結果の出力までの手順概要

本品プログラムを用いて、NextSeq550Dxシステムから出力されたシーケンス情報より解析する。解析結果として、遺伝子異常及びアノテーション情報を付与したレポートを出力する。

- (1) NextSeq 550Dx システム上のコンピュータにログイン し、本品プログラムを起動する。
- (2) 解析オーダーを登録後、解析を開始する。
- (3) 解析が完了していることを確認する。
- (4) 最終報告書を確認する。
- (5) 本品プログラムを終了し、ログアウトする。

本品が動作することが評価されているプラットフォーム

本品が動作することが評価されているプラットフォームは、 NextSeq 550Dx システム(販売名: NextSeq 550Dx システム) のみである。

【使用上の注意】 〈重要な基本的注意〉

- (1) 本品の包括的ゲノムプロファイリング検査に対する使用 に際しては、本品の使用により、必ずしも診断及び治療選択 肢方針が提示できるとは限らず、解析結果に基づく診断・治 療選択に限界があること等について、事前に患者あるいは代 諾者に説明し、適切に文書で同意を取得すること。
- (2) 本品で得られた結果は、特定の医薬品に対する適応判定を 目的としたものではない。
- (3) 本品は、基本的に体細胞性遺伝子異常を報告するものであるが、遺伝性の生殖細胞系列の病的バリアントの可能性を除外するものではない。生殖細胞系列の病的バリアントが疑われる場合には、適切な臨床的判断及び確認を行うこと。
- (4) 本品は、生殖細胞系列の検査に代わるものでなく、がんの 素因に関する情報を提供するものではない。
- (5) 最小検出感度未満の場合は、遺伝子異常が存在する場合で も、陽性と報告されないことがある。
- (6) 検査の目的・方法及び精度、偽陽性・偽陰性を含む診断限 界などについて、正確な情報を患者あるいは代諾者にも伝え ること。
- (7) FFPE組織標本は、「ゲノム研究用・診療用病理組織検体取 扱い規定」(日本病理学会) に記載のホルマリン固定条件等 を遵守された検体を用いること。
- (8) 本品検査を実施する前に、組織サンプルを病理医が検査し、 意図された用途に適していることを確認すること。
- (9) FFPE組織標本について、切片中の腫瘍含有量が 20%以上である旨確認することを推奨する。
- (10) 組織標本から抽出された核酸溶液は、抽出工程等での夾 雑物があらかじめ適切に除去できていることを確認するこ と。(例えば、A260/280を使用して核酸の純度を評価する、等。)
- (11) 臓器(骨髄を含む)または組織移植を受けた患者から得られたサンプルにおける本品検査の履行は評価されていない。
- (12) 組織領域の壊死内容が23%以上のサンプルでは、RNA融合及び遺伝子増幅検出に影響がある。組織壊死は核酸収量を減少させる可能性がある。全組織面積の23%を超える壊死が試料切片に含まれている場合、偽陰性結果の可能性を最小限にするために、壊死組織はマクロダイセクションして必要な生存腫瘍含量を確保すること。
- (13) 本品による検査には、FFPE組織から抽出した40ng RNAおよび40ng DNAが最少量として必要である。 (検体濃度は、DNAの場合は3.33ng/μL以上、RNAの場合は4.7ng/μL以上、であること。)
- (14) 試験に用いるFFPE組織は脱灰しないこと。
- (15) 薄切したFFPE検体は4週間以内に使用すること。

〈その他の注意〉

TruSight Oncology Comprehensive キット

- (1) 本品試薬の一部の成分、TruSight Oncology Comp Enrichment 2N NaOH (HP3)には、5%以上の水酸化ナトリウムが含まれ 劇物に該当するため、取扱い、廃棄には注意すること。
- (2) 試薬が誤って目や口に入った場合は、直ちに水で十分に洗い流すなどの応急処置を行い、必要があれば医師の手当て

などを受けること。

- (3) 正確な結果を得るために、遺伝子検査の熟練者あるいはその 指導のもとに試薬や検体の添加量、添加位置に十分に注意して 測定を行うこと。
- (4) ヌクレアーゼフリーの実験器具(ピペット、ピペットチップ など)を使用すること。
- (5) コンタミネーションに注意し、遺伝子検査に適した試験設備 環境にて、使い捨て手袋(パウダーフリー)及びマスクを着用 して測定を行うこと。試薬や検体が手袋等に付着した場合は、 直ちに新しいものに取り替えること。
- (6) 酵素は冷凍庫外での長時間放置を避け、素早く調製・使用すること。また、冷凍試薬の各構成試薬及びそれらを用いて調製した試薬類は、特に指定がない場合は氷上で取り扱うこと。
- (7) 操作中に加温状態で試薬を長時間放置しないこと。
- (8) 融解後のキットの各構成試薬及びそれらを用いて調製された 試薬類は液が均一になるまで十分に攪拌し、蓋を開ける前にス ピンダウンを行うこと。
- (9) 測定装置は定期的に点検を行い、使用すること。
- (10) 測定装置の取扱説明書を参照し、適切な設定を行い、装置に 適した動作環境で使用すること。
- (11) 誤って試料をこぼした場合は、保護具を着用し試料が飛び散らないようにペーパータオルなどで静かに拭き取ること。拭き取った後は、次亜塩素酸ナトリウム溶液(有効塩素濃度1.0%以上)で浸すように拭き取り、その後水拭きすること。
- (12) PCR反応生成物は、コンタミネーションを避けるため、ビニール袋で密閉し、各施設の規定に従って廃棄処理すること。
- (13) DNA抽出前の検体を取り扱う際に使用した器具類は、感染の可能性があるものとし、オートクレーブ等で滅菌処理するか又は1%次亜塩素酸等の消毒液に浸して処理し、各都道府県の規定に従って廃棄処理すること。
- (14) 廃液は水質汚濁防止法等の規制及び各都道府県の条例等に留 意して廃液処理すること。

《性能》

本品試薬の仕様

コントロール反応を含め、以下の規格を満たすものとする。

<DNA檢体>

品質管理	規格	規格
	ヒリードの割合 ≧ 80.0%	・を通過したリードの割合 ≧ 80.0%
シーケ	$1 \ge 80.09$	おけるクオリティスコアが 塩基の割合
<i>></i> ^	2 0 00	おけるクオリティスコアが 塩基の割合 ≧ 80.0%
	ヒリード総数 ≥ 59,70	·を通過したリード総数 ≥ 59,700,000
陽性コン	ズ(塩基数)の中 84~1333	トのサイズ(塩基数)の中 84~133塩基
トロール	Chimeric Reads) $\leq 0.2\%$	$y - F$ (Chimeric Reads) $\leq 0.2\%$
	の塩基の割合 ≥ 90%	が100以上の塩基の割合 ≥ 90%
	1 < 20 00	Template Control) について を通過したリード総数 ≤ 29,000,000
陰性コン	ntrol)について ≦ 8	Template Control) について ≤ 8
トロール	Chimeric Reads) $\leq 0.3\%$	$\mathcal{Y} - \mathcal{F}$ (Chimeric Reads) $\leq 0.3\%$
	Chimeric Reads) ≤ 500	$y - F$ (Chimeric Reads) ≤ 500
陽性コントロール	リティスコアが ≥ 80.09 ≥ 10.09 ≥ 10	塩基の割合 はけるクオリティスコアが 塩基の割合 を通過したリード総数

*いずれの指標も満たさなかった場合、品質管理基準について不合格と判定される。

<RNA検体>

NUA 灰件						
品質管理	品質管理指標					
	フィルターを通過したリードの割合	≥ 80.0%				
シーケンス	リード1におけるクオリティスコアが Q30以上の塩基の割合	≥ 80.0%				
	リード2におけるクオリティスコアが Q30以上の塩基の割合	≥ 80.0%				
陽性コン	フィルターを通過したリード総数	≥ 15,800,000				
トロール	フラグメントのサイズ(塩基数)の中央値	92~139塩基				

品質管理	指標	規格
	カバレッジが500以上の遺伝子の変動 係数(Coefficient of Variation; CV)の 中央値	≦ 0.81%
	キメリックリード(Chimeric Reads) の割合	≦ 0.20%
	感度(検出が期待される既知バリアント数に対する検出された既知バリアント数の割合)	≧ 0.85
	精度(総バリアントコール数に対する 正しいバリアントコール数の割合)	≥ 1
	ターゲット領域にアラインメントされ たリードの割合	≥ 73
	NTC(No Template Control)について パスフィルターを通過したリード総数	≤ 3,600,000

本品プログラムの仕様

遺伝子異常情報をがん種等の情報を含み正しく分類されたファイルを作成する。

<解析工程の基準>

1) 正確性試験

FFPE組織検体由来の核酸(DNA及びRNA)を、検証済みの参照法及び本品により測定し、真の陽性、真の陰性、偽陽性及び偽陰性の数を測定した。該当する場合は陽性及び陰性の一致率(PPA及びNPA)を計算し、ライブラリの有効率を算出した。

(TA次UNIA) と前奔し、ブインブラック情効中と奔回した。						
バリアント タイプ	基準	判定基準	% Agreement (95%信頼区間の 下限値)*			
Small DNA Variant	PPA (体細胞 変異)	≥80% (両側95%信頼 区間の下限値)	85% (382/451) 95% CI: 81%			
variani	NPA	≥99.95% (点推定値)	99.999% (33163/33224)			
CNV	PPA	≥60% (95%信頼区間 の下限値	92% (337/365) 95% CI: 89%			
	NPA	≥95% (点推定値)	98.3% (24,000/24,415)			
遺伝子融合及びスプライス・バリア	PPA	≥60% (95%信頼区間 の下限値)	80% (70/87) 95% CI: 71%			
ント	NPA	≥95% (点推定値)	99.8% (14106/14125)			

* 95% Wilson - score 信頼区間

パネル全体の Small DNA Variant、CNV、及び遺伝子融合とスプライス・バリアントの PPA 及び NPA はすべて基準を満たし、対照法と比較した真度が確認された。

2) 分析特異性 (プローブ分析) 試験

プローブ設計のための領域をすべて列挙して反応特異性を評価した。パネル上のプローブが標的遺伝子を十分にカバーできるよう、プローブの両側を20bpずつ伸ばし、すべての標的領域が単一塩基レベルですべてカバーをされているかの確認を行った。加えて、カバレッジ領域が低値を示す原因を調査、確認した。

結果、評価したシーケンスの品質はすべて規格を満たした。本品のプローブは合計で2,678,402塩基をカバーし、パネル全体でプローブがカバーしていない塩基は978塩基(< 0.05%)であり、網羅性が確認された。

3) 妨害物質試験

2つの内因性物質(メラニン及びヘモグロビン)及び3つの外因性物質(エタノール、キシレン及びプロテイナーゼK)が、本品の性能に影響を与えるかどうか調査した。2つの内因性物質(メラニン及びヘモグロビン)を核酸抽出処理中にスパイクし、3つの外因性物質(エタノール、キシレン及びプロテイナーゼK)をライブラリ調製前に精製された核酸にスパイクした。また本品に対する壊死の影響を調べるために、組織の壊死含有量が異なる検体を用いて調査した。

結果、壊死の影響について、壊死組織面積が23%を超える

検体の場合、CNV及び融合について偽陰性の可能性がある。

4) 交差汚染試験

32個のDNAライブラリと32個のRNAライブラリを、ライブラリ調製ごとに、SeraCareとFFPEの検体を交互に並べるチェックボードレイアウトに従って調製し、well-to-well汚染を評価した。各ライブラリを4回のシーケンシングランに分けた。ライブラリは、シーケンシングランごとに8つのDNA+8つのRNAライブラリでシーケンスされ、同じライブラリのプールを同じNextSeq550 Dxシステムで連続してシーケンスし、シーケンシングのrun-to-run汚染を評価した。

run to run Jak en m o res						
検体	ライブラリ 評価対象	予期せぬ変異 体による ライブラリの 汚染	汚染QCで見 逃された ライブラリ の汚染			
FFPE DNA	96	0	0			
SeraCare DNA	96	0	0			
FFPE RNA	96	0	N/A			
合計	288	0	0			

検出された変異体を検討した結果、汚染事象は認められなかった。 交差汚染の発生率は0/288 = 0%で、95%両側Wilson Score信頼区間 は [0%, 1.3%] であった。

5) 試薬の安定性試験

本品の試薬の3ロットを用いてリアルタイム安定性試験を実施し、試薬の有効期間を設定した。試験の結果、24か月までの有効期限を有するとした。本試験の評価には、(3)性能の項にある<DNA検体>及び<RNA検体>の規格を引用した。

6) 最小検出感度(LoD) 試験

Small DNA Variant (SNV、MNV及びIndel)、CNV、融合及びスプライス・バリアントのLoDは、標的バリアントを有するFFPE臨床検体又はFFPE細胞株を用い、バリアントが少なくとも95%の検出率で検出される最低の希釈濃度(以後、C95と表記)を決定することにより確立した。特定のバリアントは稀でありFFPE組織が調達できないため、FFPE細胞株を用いてC95を検証した。LoD試験では基本的にすべてのバリアントの検証でヒットレート法を用いた。

Small DNA Variant

Sinan DNA variant					
変異クラス/ ゲノム コンテクスト	遺伝子名	バリアント	Mean VAF	Range VAF	
	IDH1	R132H	0.064	0.032 - 0.079	
塩基置換	EGFR	L858R	0.016	0.01 - 0.028	
	BRAF	V600E	0.019	0.01 - 0.036	
塩基置換	BRAF	V600K	0.022	0.018 - 0.031	
(2-3bp)	KRAS	G12I	0.048	0.019 - 0.06	
挿入(1-2bp)、	ARID1A	Q372fs*28	0.086	0.058 - 0.109	
ホモポリマー リピートの近 傍	APC	T1556NfsTer3	0.104	0.052 - 0.167	
挿入(1-2bp)、	APC	S1465fs*9	0.038	0.029 - 0.049	
ジヌクレオチ ドリピートの 近傍	NOTCH1	R1598fs*12	0.051	0.041 - 0.062	
挿入(3-5bp)	FBXW7	T15_G16insP	0.030	0.019 - 0.043	
1中八(3-30p)	TP53	R333HfsTer5	0.056	0.036 - 0.078	
	TP53	P152_P153dup	0.215	0.203 - 0.228	
挿入(>5-25bp)	PIK3R1	Y470_T471dup	0.036	0.02 - 0.061	
	ERBB2	Y772_A775dup	0.034	0.025 - 0.042	
欠失(1-2bp) 、	APC	L1488fsTer19	0.100	0.069 - 0.125	
ホモポリマー リピートの近 傍	EP300	H2324fs*29	0.094	0.082 - 0.107	
欠失(1-2bp) 、	TP53	R342fs*3	0.033	0.024 - 0.043	
ジヌクレオチ ドリピートの	APC	S1465WfsTer3	0.070	0.059 - 0.079	

変異クラス/ ゲノム コンテクスト	遺伝子名	バリアント	Mean VAF	Range VAF
近傍				
欠失(3-5bp)	APC	L1488fs*18	0.028	0.02 - 0.035
大大(3-36p)	PTEN	T319fs*1	0.064	0.045 - 0.082
欠失(>5-25bp)	EGFR	E746_A750del	0.047	0.032 - 0.067
塩基置換	RET	C618R	0.046	NA
塩基置換	RET	M918T	0.038	NA
塩基置換(2- 3bp)	RET	C634Y	0.035	NA
欠失(>5-25bp)	RET	D898_E901del	0.055	NA

CNV

遺伝子名	Fold change	Range Fold change
AKT2	1.828	1.803 - 1.849
AR	2.107	2.067 - 2.179
BRAF	1.457	1.424 - 1.500
BRCA2	1.431	1.418 - 1.462
CCND1	1.818	1.720 - 1.897
CCND3	1.585	1.558 - 1.624
CCNE1	1.516	1.455 - 1.554
CDK4	2.153	2.104 - 2.194
CDK6	1.921	1.905 - 1.936
CHEK1	1.984	1.925 - 2.032
CHEK2	2.071	2.025 - 2.101
EGFR	1.523	1.453 - 1.583
ERBB2	2.034	2.002 - 2.062
ERBB3	2.001	1.960 - 2.035
ERCC1	2.117	2.062 - 2.212
ERCC2	1.787	1.734 - 1.856
ESR1	1.541	1.505 - 1.567
FGF1	2.069	2.026 - 2.122
FGF10	1.873	1.829 - 1.915
FGF14	2.02	1.955 - 2.065
FGF19	2.083	2.047 - 2.145
FGF23	2.191	2.125 - 2.239
FGF3	1.843	1.795 - 1.920
FGF4	2.005	1.969 - 2.060
FGF5	1.489	1.436 - 1.540
FGF6	1.593	1.561 - 1.621
FGF7	1.538	1.509 - 1.566
FGF9	2.077	2.030 - 2.120
FGFR1	1.678	1.617 - 1.729
FGFR2	2.055	2.034 - 2.089
FGFR3	2.201	2.154 - 2.246
FGFR4	1.602	1.559 - 1.636
JAK2	1.683	1.558 - 1.778
KIT	1.966	1.897 - 2.021
KRAS	1.972	1.939 - 2.027
LAMP1	2.111	1.975 - 2.193
MDM2	1.581	1.492 - 1.676
MDM4	1.854	1.810 - 1.898
MET	2.195	2.119 - 2.262
MYC	2.075	2.048 - 2.108
MYCL	2.188	2.084 - 2.283

遺伝子名	Fold change	Range Fold change
MYCN	1.621	1.598 - 1.664
NRAS	1.478	1.421 - 1.518
NRG1	1.787	1.748 - 1.803
PDGFRA	1.465	1.434 - 1.495
PDGFRB	1.969	1.956 - 1.982
PIK3CA	1.609	1.567 - 1.649
PIK3CB	1.683	1.660 - 1.700
RAF1	1.496	1.459 - 1.524
RET	1.528	1.514 - 1.539
RICTOR	1.583	1.540 - 1.617
RPS6KB1	2.215	2.150 - 2.304
TFRC	1.578	1.531 - 1.612

融合遺伝子

標的遺伝子 融合遺伝子 C95	共通 C95 yes yes yes yes yes yes yes yes yes yes
NOTCH2 ABCD3-NOTCH2 9.3 RET NCOA4-RET 10.0 JAK2 JAK2;AL161450.1-PLCL2 10.3 CDK4 CDK4-DPY19L2 10.7 ABL1 ABL1-C6orf10 12.3 TMPRSS2, ERG 13.2 13.2 RPS6KB1 RPS6KB1-TBC1D22A 13.2 KIF5B, RET KIF5B-RET 14.5 MYC MRPL13-MYC 15.3 ETV1 ACPP-ETV1 17.2 FGFR3 FGFR3-TACC3 17.5 KMT2A TTC36-KMT2A 18.3 EML4, ALK EML4-ALK 20.2 ESR1 ESR1-CCDC170 24.3 AKT3 AKT3-ADSS 24.3 EGFR EGFR-GALNT13 24.0	yes
RET NCOA4-RET 10.0 JAK2 JAK2;AL161450.1-PLCL2 10.3 CDK4 CDK4-DPY19L2 10.7 ABL1 ABL1-C6orf10 12.3 TMPRSS2, ERG 13.2 13.2 RPS6KB1 RPS6KB1-TBC1D22A 13.2 KIF5B, RET KIF5B-RET 14.5 MYC MRPL13-MYC 15.3 ETV1 ACPP-ETV1 17.2 FGFR3 FGFR3-TACC3 17.5 KMT2A TTC36-KMT2A 18.3 EML4, ALK EML4-ALK 20.2 ESR1 ESR1-CCDC170 24.3 AKT3 AKT3-ADSS 24.3 EGFR EGFR-GALNT13 24.0	yes
JAK2 JAK2;AL161450.1-PLCL2 10.3 CDK4 CDK4-DPY19L2 10.7 ABL1 ABL1-C6orf10 12.3 TMPRSS2, ERG TMPRSS2-ERG 13.2 ERG RPS6KB1-TBC1D22A 13.2 KIF5B, RET KIF5B-RET 14.5 MYC MRPL13-MYC 15.3 ETV1 ACPP-ETV1 17.2 FGFR3 FGFR3-TACC3 17.5 KMT2A TTC36-KMT2A 18.3 EML4, ALK EML4-ALK 20.2 ESR1 ESR1-CCDC170 24.3 AKT3 AKT3-ADSS 24.3 EGFR EGFR-GALNT13 24.0	yes
CDK4 CDK4-DPY19L2 10.7 ABL1 ABL1-C6orf10 12.3 TMPRSS2, ERG TMPRSS2-ERG 13.2 ERG RPS6KB1-TBC1D22A 13.2 KIF5B, RET KIF5B-RET 14.5 MYC MRPL13-MYC 15.3 ETV1 ACPP-ETV1 17.2 FGFR3 FGFR3-TACC3 17.5 KMT2A TTC36-KMT2A 18.3 EML4, ALK EML4-ALK 20.2 ESR1 ESR1-CCDC170 24.3 AKT3 AKT3-ADSS 24.3 EGFR EGFR-GALNT13 24.0	yes yes yes yes yes yes yes yes
ABL1 ABL1-C6orf10 12.3 TMPRSS2, ERG TMPRSS2-ERG 13.2 RPS6KB1 RPS6KB1-TBC1D22A 13.2 KIF5B, RET KIF5B-RET 14.5 MYC MRPL13-MYC 15.3 ETV1 ACPP-ETV1 17.2 FGFR3 FGFR3-TACC3 17.5 KMT2A TTC36-KMT2A 18.3 EML4, ALK EML4-ALK 20.2 ESR1 ESR1-CCDC170 24.3 AKT3 AKT3-ADSS 24.3 EGFR EGFR-GALNT13 24.0	yes yes yes yes yes
TMPRSS2, ERG TMPRSS2-ERG 13.2 RPS6KB1 RPS6KB1-TBC1D22A 13.2 KIF5B, RET KIF5B-RET 14.5 MYC MRPL13-MYC 15.3 ETV1 ACPP-ETV1 17.2 FGFR3 FGFR3-TACC3 17.5 KMT2A TTC36-KMT2A 18.3 EML4, ALK EML4-ALK 20.2 ESR1 ESR1-CCDC170 24.3 AKT3 AKT3-ADSS 24.3 EGFR EGFR-GALNT13 24.0	yes yes yes yes
ERG TMPRSS2-ERG 13.2 RPS6KB1 RPS6KB1-TBC1D22A 13.2 KIF5B, RET KIF5B-RET 14.5 MYC MRPL13-MYC 15.3 ETV1 ACPP-ETV1 17.2 FGFR3 FGFR3-TACC3 17.5 KMT2A TTC36-KMT2A 18.3 EML4, ALK EML4-ALK 20.2 ESR1 ESR1-CCDC170 24.3 AKT3 AKT3-ADSS 24.3 EGFR EGFR-GALNT13 24.0	yes yes yes yes
KIF5B, RET KIF5B-RET 14.5 MYC MRPL13-MYC 15.3 ETV1 ACPP-ETV1 17.2 FGFR3 FGFR3-TACC3 17.5 KMT2A TTC36-KMT2A 18.3 EML4, ALK EML4-ALK 20.2 ESR1 ESR1-CCDC170 24.3 AKT3 AKT3-ADSS 24.3 EGFR EGFR-GALNT13 24.0	yes yes yes
MYC MRPL13-MYC 15.3 ETV1 ACPP-ETV1 17.2 FGFR3 FGFR3-TACC3 17.5 KMT2A TTC36-KMT2A 18.3 EML4, ALK EML4-ALK 20.2 ESR1 ESR1-CCDC170 24.3 AKT3 AKT3-ADSS 24.3 EGFR EGFR-GALNT13 24.0	yes yes
ETV1 ACPP-ETV1 17.2 FGFR3 FGFR3-TACC3 17.5 KMT2A TTC36-KMT2A 18.3 EML4, ALK EML4-ALK 20.2 ESR1 ESR1-CCDC170 24.3 AKT3 AKT3-ADSS 24.3 EGFR EGFR-GALNT13 24.0	yes
FGFR3 FGFR3-TACC3 17.5 KMT2A TTC36-KMT2A 18.3 EML4, ALK EML4-ALK 20.2 ESR1 ESR1-CCDC170 24.3 AKT3 AKT3-ADSS 24.3 EGFR EGFR-GALNT13 24.0	
KMT2A TTC36-KMT2A 18.3 EML4, ALK EML4-ALK 20.2 ESR1 ESR1-CCDC170 24.3 AKT3 AKT3-ADSS 24.3 EGFR EGFR-GALNT13 24.0	
EML4, ALK EML4-ALK 20.2 ESR1 ESR1-CCDC170 24.3 AKT3 AKT3-ADSS 24.3 EGFR EGFR-GALNT13 24.0	yes
ESR1 ESR1-CCDC170 24.3 AKT3 AKT3-ADSS 24.3 EGFR EGFR-GALNT13 24.0	yes
AKT3 AKT3-ADSS 24.3 EGFR EGFR-GALNT13 24.0	yes
EGFR EGFR-GALNT13 24.0	yes
	yes
ECEDI COD CO T	yes
FGFR1 FGFR1-GSR 23.7	yes
FGFR2 FGFR2-SRPK2 24.7	no
AXL HNRNPUL1-AXL 26.3	yes
NOTCH3 NOTCH3-ELAVL3;CTC- 398G3.6 28.3	no
NRG1 SPIDR-NRG1 28.2	yes
ROS1 CD74-ROS1;GOPC 28.2	yes
RAF1 RAF1-VGLL4 28.5	yes
ETV5 CSNK1D-ETV5 28.5	yes
ETV4 DHX8;ETV4-STAT3 30.5	yes
BRAF MKRN1-BRAF 31.2	yes
FLT1 PSPC1-FLT1 38.7	yes
BCL2 BCL2-IGHJ5 44.2	no
PAX3 PAX3-FOXO1 54.7	yes
MLLT3 MLLT3-AQP7 未決定	yes
AR AR-CGGBP1;ZNF654 未決定	yes
MET MET-MKLN1; MKLN1- N/A AS2	N/A
ERBB2 ERBB2-IL1RAPL2 未決定	no
PPARG PPARG-C3orf83;MKRN2 N/A	

スプライス・バリアント

٠.	. 2 2 1 2 1 2 1 2 1				
	遺伝子	平均	Range		
	[图][4]	Supporting Reads	Supporting Reads		
	EGFR	24.8	19-31		
	MET	18.7	11-37		

結果として、パネル全体のSmall DNA Variant、CNV、融合遺伝子及びスプライス・バリアントのLoDを確立、確認した。
 なお、6検体(正常組織:4検体、良性組織(非癌性腫瘍):2検体)を用いた検討により、LoBの偽陽性率は5%未満であった。

【保管方法及び有効期間等】

保管方法の条件は、以下のとおり試薬ごとに定められている。

試薬名	保存条件
TruSight Oncology Comp RNA Library Prep (1/8)	-25 ~ -15°C
TruSight Oncology Comp Library Prep (2/8) (凍結)	-25 ~ -15°C
TruSight Oncology Comp Library Prep (3/8) (冷蔵)	$2\sim 8^{\circ}C$
TruSight Oncology Comp UP Index Primers (4/8)	-25 ~ -15°C
TruSight Oncology Comp CP Index Primers (5/8)	-25 ~ -15°C
TruSight Oncology Comp Enrichment (6/8) (冷蔵)	$2\sim 8^{\circ}C$
TruSight Oncology Comp Enrichment (7/8) (凍結)	-25 ~ -15°C
TruSight Oncology Comp Content Set (8/8)	-25 ~ -15°C
TruSight Oncology RNA Control	-85 ~ -65°C
TruSight Oncology DNA Control	-25 ~ -15°C

有効期間

24か月

※使用期限は外装に記載している。

【保守点検に係る事項】

- 1. 使用者による保守点検事項 本解析プログラム起動毎に、モニタに初期画面が正常に表示 されることを確認すること。
- 2. 業者による保守点検事項 特になし。

【承認条件】

がんゲノム医療に関連する十分な知識及び経験を有する医師 が、関連学会の最新のガイドライン等に基づく検査の対象及び 時期を遵守した上で、がんゲノム医療中核拠点病院等の整備に 関する指針に従い、がんゲノムプロファイリング検査に基づく 診療体制が整った医療機関で本品を用いるよう、必要な措置を 講ずること。

【主要文献及び文献請求先】

次世代シークエンサー等を用いた遺伝子パネル検査に基づく がん診療ガイダンス改訂第2.1版(日本臨床腫瘍学会・日本癌治 療学会·日本癌学会)

一般社団法人 日本癌学会:https://www.jca.gr.jp/ 一般社団法人 日本癌治療学会:http://www.jsco.or.jp/jpn/ 公益社団法人 日本臨床腫瘍学会:https://www.jsmo.or.jp/

【製造販売業者及び製造業者の氏名又は名称等】

製造販売業者:イルミナ株式会社

₹108-0014

東京都港区芝五丁目36番7号 三田ベルジュビル

電話:03-4578-2800 (代表)

製造業者(国名):

Illumina Inc (USA)

問い合わせ先

イルミナ株式会社 テクニカルサポート

₹108-0014

東京都港区芝五丁目36番7号 三田ベルジュビル22階

電話:0800-111-5011 (フリーダイヤル) E-mail: techsupport@illumina.com