Illumina Doc. #15029386, Rev. A	Page 1 of 15
EFFECTIVE:	10/12/11
SUPERSEDES:	New

MATERIAL SAFETY DATA SHEET

Illumina, Inc.

Prepared to U.S. OSHA, CMA, ANSI, Canadian WHMIS, European Union, Australian NOHSC, Japanese Industrial, and Global Harmonization Standards

PART I

What is the material and what do I need to know in an emergency?

1. IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY/UNDERTAKING

PRODUCT IDENTIFIER

TRADE NAME (AS LABELED): CHEMICAL NAME/CLASS:

SYNONYMS:

DOCUMENT NUMBER:

PRODUCT USE:

SUPPLIER OF THE SAFETY DATA SHEET

U.S. MANUFACTURER/DISTRIBUTOR:

Address:

Business Phone:

Nextera Library Preparation Reagents

Mixture None 15029386 DNA Sequencing

ILLUMINA, Inc.

9885 Towne Centre Drive San Diego, CA 92121-1975 +1-800-809-ILMN (toll-free) +1-800-809-4566 (toll-free)

+1-858-202-4566 (outside North America)

AUSTRALIAN SUPPLIER/DISTRIBUTOR'S NAME:

Address:

Business Phone:

EUROPEAN SUPPLIER/ DISTRIBUTOR'S NAME:

Address:

Business Phone:

EMERGENCY PHONE:

1-858-202-4566 (North America)

+1-858-202-4566 (outside North America, call collect)

EMAIL ADDRESS/COMPETENT PERSON FOR MSDS: techsupport@illumina.com DATE OF PREPARATION: techsupport@illumina.com September 16, 2011

DATE OF REVISION: New

NOTE: ALL United States Occupational Safety and Health Administration Standard (29 CFR 1910.1200), U.S. State equivalent Standards, Canadian WHMIS [Controlled Products Regulations], EU Directives [67/548/EEC and subsequent amendments to the directive], European Union Regulations [(EC) 1272/2008 and subsequent amendments to the regulation], Global Harmonization Standard, Australian [NOHSC:2011 (2003)], and Japanese Industrial Standard (JIS Z 7250: 2005) required information is included in appropriate sections based on the U.S. ANSI Z400.1-2010 format. This product has been classified in accordance with the hazard criteria of the countries listed above.

2. HAZARD IDENTIFICATION

This Material Safety Data sheet describes the Illumina Sequencing Reagents. This product consists of five solutions. This Material Safety Data Sheet provides complete information on all the components described in the following tables. Unless otherwise specified, the information in each section of this document is pertinent to each solution. The solutions of this product are mixtures (preparations) of chemical compounds.

GLOBAL HARMONIZATION AND EU CLP REGULATION (EC) 1272/2008 LABELING AND CLASSIFICATION: This product has been classified per CLP Regulation (EC) 1272/2008 and Japanese Industrial Standard Z 7251:2006. NX#-TD Solution:

<u>Classification</u>: Reproductive Toxicity Category 1B, Eye Irritation Category 2.

Signal Word: Danger

Hazard Statement Codes: H319, H360D

<u>Precautionary Statement Codes</u>: P201, P202, P264, P280, P281, P305 + P351 + P338, P308 + P313, P337 + P313, P405, P501

Hazard Symbol/Pictogram: GHS08

All Other Solutions:

<u>Classification</u>: Not applicable. <u>Signal Word</u>: Not applicable. <u>Hazard Statement Codes</u>: Not applicable. <u>Precautionary Statement Codes</u>: Not applicable. <u>Hazard Symbol/Pictogram</u>: Not applicable.

EU 67/548/EEC /AUSTRALIAN LABELING AND CLASSIFICATION: This product has been classified per European Union Council Directive 67/548/EEC and subsequent Directives and Australian National Occupational Health and

Safety Commission [NOHSC(1008:2004)]. NX#-TD Solution:

<u>Classification</u>: Toxic to Reproduction Category 2, Irritant. <u>Ris</u>

Risk Phrases: R36, R61

Symbol:

All Other Solutions:

Classification: Not applicable.

Risk Phrases: Not applicable. Symbol: Not applicable.

See Section 16 for full text of Risk Phrases/Precautionary Statements

EMERGENCY OVERVIEW: Product Description: NX#-TD Solution: These solutions are clear, colorless liquids with a mildly sulfurous odor. All Other Solutions: These solutions are clear, colorless, odorless liquids.

2. HAZARD IDENTIFICATION (Continued)

EMERGENCY OVERVIEW: Health Hazards: NX#-TD Solution: The Aliphatic Amide constituent of these components is considered toxic to reproduction. All Other Solutions: The chief hazard in event of overexposure is the potential for irritation of contaminated skin or eyes. **Flammability Hazards:** All Other Solutions: These solutions present no significant fire hazards. **Reactivity Hazards:** These solutions are not reactive. **Environmental Hazards:** Negligible. **Emergency Recommendations:** Emergency responders must wear personal protective equipment suitable for the situation to which they are responding.

3. COMPOSITION AND INFORMATION ON INGREDIENTS								
CHEMICAL NAME	CAS#	European EINECS#	Japanese ENCS#	Australian AICS	% v/v	EU Classification (67/548/EEC) GHS & EU Classification (1272/2008 EC)		
COMPONENT 1: Code NX#-TDE1								
Aliphatic Triol	Proprietary	Listed	Listed	Listed	30–55	EU 67/548 HAZARD CLASSIFICATION: Not Applicable GHS & EU 1272/2008 CLASSIFICATION: Not Applicable		
Water and other trace co	Water and other trace constituents.					EU 67/548 HAZARD CLASSIFICATION: Not Applicable. GHS & EU 1272/2008 CLASSIFICATION: Not Applicable		
COMPONENT 2: Co	de NX#-TD							
Aliphatic Amide	Proprietary	Listed	Listed	Listed	15–25	EU 67/548: Hazard Classification: Toxicity for Reproductive Cat. 2; Harmful; Irritant Risk Phrases: R20/21; R36; R61 GHS & EU 1272/2008: Classification: Reproductive Toxicity Cat. 1B, Acute Toxicity Cat. 4, Eye Irritation Cat. 2 Hazard Statement Codes: H312, H319, H332, H360D		
Water and other trace constituents.					Balance	EU 67/548 HAZARD CLASSIFICATION: Not Applicable. GHS & EU 1272/2008 CLASSIFICATION: Not Applicable.		
COMPONENT 3: Co	de NX#-RSB							
Water and other trace constituents.					Balance	EU 67/548 HAZARD CLASSIFICATION: Not Applicable GHS & EU 1272/2008 CLASSIFICATION: Not Applicable		
COMPONENT 4: Co	de LP#-PPC							
Water and other trace constituents.					Balance	EU 67/548 HAZARD CLASSIFICATION: Not Applicable GHS & EU 1272/2008 CLASSIFICATION: Not Applicable		
COMPONENT 5: Co	de NX#-NPM							
Aliphatic Diol	Proprietary	Listed	Listed	Listed	20–30	EU 67/548 HAZARD CLASSIFICATION: Not Applicable GHS & EU 1272/2008 CLASSIFICATION: Not Applicable		
Glycol Homopolymer	Proprietary	Unlisted	Listed	Listed	1–5	EU 67/548 HAZARD CLASSIFICATION: Not Applicable GHS & EU 1272/2008 CLASSIFICATION: Not Applicable		
Potassium Salt	Proprietary	Listed	Listed	Listed	1–5	EU 67/548 HAZARD CLASSIFICATION: Not Applicable GHS & EU 1272/2008 CLASSIFICATION: Not Applicable		
Water and other trace co					Balance	EU 67/548 HAZARD CLASSIFICATION: Not Applicable. GHS & EU 1272/2008 CLASSIFICATION: Not Applicable		

See Section 16 for full text of Ingredient Risk Phrases and Hazard Statements. All trace constituents present in less than 1 percent concentration (0.1% concentration for potential carcinogens, reproductive toxins, respiratory tract sensitizers, and mutagens).

PART II What should I do if a hazardous situation occurs?

4. FIRST-AID MEASURES

<u>PROTECTION OF FIRST AID RESPONDERS</u>: Rescuers should be taken for medical attention if necessary. Remove or cover gross contamination to avoid exposure to rescuers.

<u>DESCRIPTION OF FIRST AID MEASURES</u>: Contaminated individuals must seek medical attention if any adverse effect occurs. Take a copy of label and MSDS to physician or health professional with the contaminated individual.

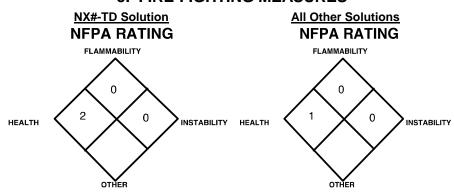
<u>Skin Exposure</u>: If this product contaminates the skin, begin decontamination with copious amounts of running water. Remove exposed or contaminated clothing, taking care not to contaminate eyes. Contaminated clothing must be removed and laundered before re-use. The contaminated individual must seek medical attention if any adverse effect develops after the area is flushed.

Eye Exposure: If this product contaminates the eyes, open victim's eyes while under gently running water. Use sufficient force to open eyelids. Have the contaminated individual "roll" eyes. Minimum flushing is for 20 minutes. The contaminated individual must seek medical attention if adverse effects occur after flushing.

<u>Inhalation</u>: If vapors, mists or sprays from this product are inhaled, remove contaminated individual to fresh air. If necessary, use artificial respiration to support vital functions. Seek medical attention if adverse effect continues after removal to fresh air.

Ingestion: If this product is swallowed, CALL PHYSICIAN OR POISON CONTROL CENTER FOR MOST CURRENT INFORMATION. DO NOT INDUCE VOMITING unless directed by medical personnel. Have contaminated individual rinse mouth with water. Never induce vomiting or give diluents (milk or water) to someone who is unconscious, having convulsions, or unable to swallow. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain an open airway and prevent aspiration. If contaminated individual is convulsing, maintain an open airway and obtain immediate medical attention.

<u>IMPORTANT SYMPTOMS AND EFFECTS</u>: See Sections 3 (Hazard Identification) and 11 (Toxicological Information).



4. FIRST-AID MEASURES (Continued)

<u>MEDICAL CONDITIONS AGGRAVATED BY EXPOSURE</u>: Pre-existing dermatitis, other skin conditions, respiratory conditions, and liver, kidney, and cardiovascular disorders may be aggravated by overexposure to components of this product.

<u>IMMEDIATE MEDICAL ATTENTION AND SPECIAL TREATMENT NEEDED</u>: Treat symptoms and eliminate overexposure.

5. FIRE-FIGHTING MEASURES

Hazard Scale: **0** = Minimal **1** = Slight **2** = Moderate **3** = Serious **4** = Severe

FLASH POINT: Not flammable.

AUTOIGNITION TEMPERATURE: Not applicable.

FLAMMABLE LIMITS (in air by volume, %): Not applicable

<u>FIRE EXTINGUISHING MEDIA</u>: In the event of a fire, use suppression methods for surrounding materials (e.g., water spray, dry chemical, carbon dioxide, foam, any "ABC" class extinguisher).

UNSUITABLE EXTINGUISHING MEDIA: Halon extinguishers should not be used for fires involving this product.

SPECIAL FIRE AND EXPLOSION HAZARDS:

NX#-TD Solution: The Aliphatic Amide constituent of this component is considered toxic to reproduction. When involved in a fire, this product's components will decompose and produce irritating vapors and toxic gases (including carbon oxides, dimethyl amine, hydrogen chloride, and potassium and nitrogen oxides).

Explosion Sensitivity to Mechanical Impact: Not sensitive.

Explosion Sensitivity to Static Discharge: Not sensitive.

<u>ADVICE FOR FIREFIGHTERS</u>: Do <u>not</u> use halogenated extinguishing media. Move containers from fire area if it can be done without risk to personnel. Incipient fire responders should wear eye protection. Structural firefighters must wear Self-Contained Breathing Apparatus and full protective equipment. Chemical resistant clothing may be necessary. If possible, prevent runoff water from entering storm drains, bodies of water, or other environmentally sensitive areas.

6. ACCIDENTAL RELEASE MEASURES

<u>PERSONAL PRECAUTIONS</u>: In the event of a spill, clear the area and protect people. Trained personnel using pre-planned procedures should respond to uncontrolled releases. Avoid generating airborne mists or sprays. The atmosphere must have levels of components lower than those listed in Section 8, (Exposure Controls and Personal Protective Equipment) if applicable, and have at least 19.5 percent oxygen before personnel can be allowed into the area without Self-Contained Breathing Apparatus (SCBA). Monitor area and confirm levels are bellow exposure limits given in Section 8 (Exposure Controls-Personal Protection), if applicable, before non-response personnel are allowed into the spill area.

PROTECTIVE EQUIPMENT:

Small Spills: For incidental spills (e.g., 1 bottle), wear lightweight gloves, a lab coat, and eye protection.

<u>Large Spills</u>: For large spills (e.g., a case of bottles), protective apparel should be Level C: triple-gloves (rubber gloves and nitrile gloves over latex gloves), chemical resistant suit and boots, hardhat, and Air-Purifying respirator with organic vapor cartridge. Self-Contained Breathing Apparatus must be selected if release occurs in confined or poorly ventilated areas or in situations in which the level of oxygen is below 19.5%.

METHODS FOR CLEANUP AND CONTAINMENT:

Small Spills: Absorb spilled liquid with polypads or other suitable absorbent material.

<u>Large Spills</u>: Absorb spilled liquid with polypads or other suitable absorbent materials. Dike or otherwise contain spill and remove with vacuum truck or pump to storage/salvage vessels.

<u>All Spills</u>: Decontaminate the area of the spill thoroughly using detergent and water. Place all spill residue in an appropriate container and seal. Do not mix with wastes from other materials. If necessary, discard contaminated response equipment or rinse with soapy water before returning such equipment to service. Dispose of in accordance with applicable international, national, state, and local procedures (see Section 13, Disposal Considerations).

<u>ENVIRONMENTAL PRECAUTIONS</u>: Prevent material from entering sewer or confined spaces, waterways, soil or public waters. Do not flush to sewer. For spills on water, contain, minimize dispersion and collect.

PART III How can I prevent hazardous situations from occurring?

7. HANDLING and STORAGE

PRECAUTIONS FOR SAFE HANDLING: All employees who handle this material should be trained to handle it safely. As with all chemicals, avoid getting this product's components ON YOU or IN YOU. Open containers slowly on a stable surface. Avoid splashing or spraying this product's components. Avoid breathing vapors, mists, or sprays generated by this product's components. Do not eat or drink while handling this product's components. Wash thoroughly after handling this product's components.

CONDITIONS FOR SAFE STORAGE: Ensure containers of this product's components are properly labeled. Store vials as directed in the product insert. Store away from incompatible materials. Material should be stored in secondary containers, as appropriate. Storage areas should be made of fire resistant materials. Post warning and "NO SMOKING" signs in storage and use areas, as appropriate. Have appropriate extinguishing equipment in the storage area (i.e., sprinkler system, portable fire extinguishers). Keep vials tightly closed when not in use. Inspect vials containing this product's components for leaks or damage. Read instructions provided with the product prior to use.

SPECIFIC END USE(S): This product is for use in laboratory biological research. Follow industry standards for use. PROTECTIVE PRACTICES DURING MAINTENANCE OF CONTAMINATED EQUIPMENT: indicated in Section 6 (Accidental Release Measures). Make certain that application equipment is locked and tagged-out safely, as applicable. Collect all rinsates and dispose of according to applicable Federal, State, and local procedures standards.

8. EXPOSURE CONTROLS - PERSONAL PROTECTION

EXPOSURE LIMITS/CONTROL PARAMETERS:

Workplace/Occupational Exposure Limits: NOTE: Solutions not specifically listed are primarily water and trace constituents; no

CHEMICAL NAME CA	CAS#	EXPOSURE LIMITS IN AIR							
		ACGIH-TLVs		OSHA-PELs		NIOSH-RELs		NIOSH	OTHER
		TWA mg/m ³	STEL mg/m ³	TWA mg/m ³	STEL mg/m ³	TWA mg/m ³	STEL mg/m ³	IDLH mg/m ³	mg/m ³
COMPONENT 1: Code NX#-TDE1									
Aliphatic Triol		10 ppm (mist)	NE	15 (total dust) 5 (resp. frac.) Vacated 1989 PEL: 10 (total)	NE	NE	NE	NE	DFG MAKs: TWA = 50 (inhalable fraction) PEAK = 2•MAK 15 min. average value, 1-hr interval, 4 per shift Pregnancy Risk Group C
COMPONENT 2: Code NX#-TD									
Aliphatic Amide		30 (skin)	NE	30 (skin)	NE	30 (skin)	NE	1520	DFG MAK: TWA = 15 (skin) PEAK = 4•MAK 15 min. average value, 1-hr interval, 4 per shift Danger of cutaneous absorption Pregnancy Risk Group B Carcinogen: IARC-3, TLV A4
COMPONENT 5: 0	Code NX#-I	NPM							
Aliphatic Diol		NE	NE	NE	NE	NE	NE	NE	AIHA WEELs: TWA = 10
Glycol Homopolymer		NE	NE	NE	NE	NE	NE	NE	NE
Potassium Salt		NE	NE	NE	NE	NE	NE	NE	NE

See Section 16 for Definitions of Other Terms Used

International Occupational Exposure Limits: In addition to the exposure limit values cited in this section, other exposure limits have been established by various countries for the components of this product. The exposure limits given may not be the most current; individual country authorities should be contacted to check on more current limits.

ALIPHATIC AMIDE: Australia: TWA = 10 ppm (30 mg/m³), JUL 2008 Belgium: TWA = 10 ppm (30 mg/m³), Skin, MAR 2002 Denmark: TWA = 10 ppm (30 mg/m 3), OCT 2002 Finland: TWA = 10 ppm (30 mg/m 3), STEL= 20 ppm (60 mg/m³), Skin, JAN 1999 France: VME = 10 ppm (30 mg/m³), Skin, FEB 2006

Germany: MAK = 15 mg/m^3 (5 mL/m³), 2005 Hungary: TWA = 30 mg/m³, STEL = 120 mg/m³, Skin, SEP 2000

Japan: OEL = 10 ppm (30 mg/m3), skin, 2B carcinogen, APR 2007

Korea: TWA = 10 ppm (30 mg/m3), skin, 2006 Mexico: TWA = 10 ppm (30 mg/m³); STEL = 20 ppm (60 mg/m³), 2004

The Netherlands: MAC-TGG = 15 mg/m³, Skin, 2003 New Zealand: TWA = 10 ppm (30 mg/m³), skin, JAN

The Philippines: TWA = 10 ppm (30 mg/m3), Skin, JAN 1993

ALIPHATIC AMIDE (continued):

Poland: MAC(TWA) = 10 mg/m³, MAC(STEL) = 60 mg/m³, JAN 1999

Russia: STEL = 10 mg/m³, Skin, JUN 2003 Sweden: TWA = 10 ppm (30 mg/m³); STEL = 15 ppm

(45 mg/m³), Skin, JUN 2005 Switzerland: MAK-W = 5 ppm (15 mg/m³), KZG-W = 20 ppm (60 mg/m³), Skin, DEC 2006

Turkey: TWA = 10 ppm (30 mg/m³), Skin, JAN 1993 United Kingdom: TWA = 10 ppm (30 mg/m³); STEL = 20 ppm (skin), 2005

In Argentina, Bulgaria, Colombia, Jordan, Singapore, Vietnam check ACGIH TLV

ALIPHATIC TRIOL:

Australia: TWA = 10 mg/m³, JAN 1993 Belgium: TWA = 10 mg/m³, JAN 1993 Finland: TWA = 20 mg/m³, JAN 1999 France: VME = 10 mg/m³, JAN 1999 Korea: TWA = 10 mg/m3 (mist), 2006 Mexico: TWA = 10 mg/m³ (inhalable), 2004

ALIPHATIC TRIOL (continued):

The Netherlands: MAC-TGG = 10 mg/m³, 2003 New Zealand: TWA = 10 mg/m³ (mist), JAN 2002 United Kingdom: TWA = TWA 10 mg/m³, 2005 In Argentina, Bulgaria, Colombia, Jordan, Singapore, Vietnam check ACGIH TLV

GLYCOL HOMOPOLYMER:

The Netherlands: MAC-TGG = 1000 mg/m³, 2003 Denmark: TWA = 1000 mg/m³, OCT 2002 Germany: MAK = 1000 mg/m³ (inhalable), 2005

POLYETHYLENE GLYCOL: The Netherlands: MAC-TGG = 1000 mg/m³, 2003

Russia: STEL = 10 mg/m³, JUN 2003 Denmark: TWA = 1000 mg/m³, OCT 2002 Germany: MAK = 1000 mg/m³ (inhalable), 2005 POTASSIUM SALT:

Russia: STEL = 5 mg/m³, JUN 2003

ALIPHATIC DIOL

New Zealand: TWA = 10 mg/m3 (particulates only), JAN 2002

Nextera Library Preparation Reagents

Illumina Doc. #15029386, Rev. A

8. EXPOSURE CONTROLS - PERSONAL PROTECTION (Continued)

EXPOSURE LIMITS/CONTROL PARAMETERS (continued):

International Occupational Exposure Limits (continued):

ALIPHATIC DIOL (continued):

New Zealand: TWA = 150 ppm (474 mg/m³) (vapour and particulates), JAN 2002

ALIPHATIC DIOL (continued): Russia: STEL = 7 mg/m³, JUN 2003 United Kingdom: TWA = 10 mg/m³ (particulate), 2005 **ALIPHATIC DIOL (continued):** United Kingdom: TWA = 150 ppm (474 mg/m³) (total vapor), 2005

ENGINEERING CONTROLS:

Ventilation: Use with adequate ventilation to ensure exposure levels are maintained below the limits provided below, if applicable. If necessary, refer to Australian National Code of Practice for the Control of Workplace Hazardous Substances [NOHSC: 2007 (1994)] for further information. As with all products that contain chemicals, ensure proper decontamination equipment (e.g., eyewash/safety shower stations) are available near areas where this product is used as necessary.

PERSONAL PROTECTIVE EQUIPMENT: The following information on appropriate Personal Protective Equipment is provided to assist employers in complying with OSHA regulations found in 29 CFR Subpart I (beginning at 1910.132), equivalent standards of Canada (including CSA Standard Z94.4-02 and CSA Standard Z94.3-07), standards of EU member states (including EN 529:2005 for respiratory PPE, CEN/TR 15419:2006 for hand/body protection, and CR 13464:1999 for face/eye protection), standards of Australia (including AS/NZS 1715:1994 for respiratory PPE, AS/NZS 4501.2:2006 for protective clothing, AS/NZS 2161.1:2000 for glove selection, and AS/NZS 1336:1997 for eye protection), or standards of Japan (including JIS T 8116:2005 for glove selection, JIS T 8150:2006 for respiratory PPE, JIS T 8147:2003 for eye protectors, and JIS T 8030:2005 for protective clothing). Please reference applicable regulations and standards for relevant details.

Respiratory Protection: Respiratory protection is not generally needed when using this product. Maintain airborne contaminant concentrations below limits listed above. In instances where inhalable mists or sprays of product may be generated and respiratory protection is necessary, use only respiratory protection authorized per regulatory authorities. Oxygen levels below 19.5% are considered IDLH by OSHA. In such atmospheres, use of a full-facepiece pressure/demand SCBA or a full facepiece, SAR with auxiliary self-contained air supply is required under OSHA's Respiratory Protection Standard (1910.134-1998).

Eye Protection: Depending on the use of this product, splash goggles or safety glasses may be worn. Use goggles or safety glasses for spill response, as stated in Section 6 (Accidental Release Measures) of this MSDS. If necessary, appropriate country regulations for eye protective equipment.

Hand Protection: Wear butyl rubber, neoprene, or nitrile rubber or latex gloves for routine use. If necessary, refer to appropriate country regulations for hand protection.

Body Protection: Use body protection appropriate for task, such as a lab coat. If necessary, use body protection appropriate for task (e.g., Tyvek suit, rubber apron). If necessary, refer to U.S. OSHA Technical Manual (Section VII: Personal Protective Equipment), appropriate individual country standards. If a hazard of injury to the feet exists due to falling objects, rolling objects, where objects may pierce the soles of the feet or where employee's feet may be exposed to electrical hazards, use foot protection, as described in U.S. OSHA 29 CFR 1910.136 and the Canadian CSA Standard Z195-02, Protective Footwear and appropriate individual country standards.

9. PHYSICAL and CHEMICAL PROPERTIES

The following information is component specific.

ODOR:

NX#-TD Solution: Slight fishy odor. All Other Solutions: Odorless.

HOW TO DETECT THESE SUBSTANCES:

NX#-TD Solution: The odor may act as a warning property associated with this liquid.

All Other Solutions: There are no unusual warning properties associated with these components.

The following information applies to all components, in general. MOLECULAR WEIGHT (single entity only): Not applicable.

pH: 6-10

COLOR: Colorless. VISCOSITY: Not established. APPEARANCE: Clear. PHYSICAL STATE: Liquid.

BOILING POINT: Not established. MELTING/FREEZING POINT: Not established.

RELATIVE VAPOR DENSITY (air = 1): Not established. VAPOR PRESSURE: Not established. FLASH POINT: Not applicable. FLAMMABILITY: Not flammable.

<u>UPPER EXPLOSIVE LIMIT</u>: Not established. LOWER EXPLOSIVE LIMIT: Not established.

AUTOIGNITION TEMPERATURE: Not established. DECOMPOSITION TEMPERATURE: Not established.

OXIDIZING PROPERTIES: Not applicable. EXPLOSIVE PROPERTIES: Not applicable.

EVAPORATION RATE (n-BuAc = 1): Not established. % VOLATILITY: Not established. DENSITY/SPECIFIC GRAVITY: Not established. ODOR THRESHOLD: Not established. SOLUBILITY IN WATER: Completely soluble. SOLUBILITY: Miscible in some organic solvents.

PARTITION COEFFICIENT (n-octanol/water): Not established

10. STABILITY AND REACTIVITY

REACTIVITY/CHEMICAL STABILITY: Stable at room temperature in sealed containers. This product is not expected to be reactive.

POSSIBILITY OF HAZARDOUS POLYMERIZATION: Will not occur.

CONDITIONS TO AVOID: Mixing with incompatible chemicals or as given above.

10. STABILITY AND REACTIVITY (Continued)

INCOMPATIBLE MATERIALS:

NX#-TD Solution: Carbon tetrachloride; other halogenated compounds when in contact with iron; strong oxidizers; alkyl aluminums; inorganic nitrates.

All Other Solutions: Strong oxidizers, strong acids, some metals and substances that are incompatible with water.

HAZARDOUS DECOMPOSITION PRODUCTS:

Combustion: Carbon oxides, dimethyl amine, hydrogen chloride, and potassium and nitrogen oxides.

Hydrolysis: None known.


PART IV Is there any other useful information about this material?

11. TOXICOLOGICAL INFORMATION

NX#-TD SOLUTION

ALL OTHER SOLUTIONS

HAZARDOUS MATERIAL IDENTIFICATION SYSTEM							
HEALTH	HAZARD	(BL	Œ) 2				
FLAMMA	BILITYH	AZARD (RED) 0				
PHYSICAL HAZARD (YELLOW) 0							
PROTECTIVE EQUIPMENT							
EYES	RESPIRATORY	HANDS	BODY				
	See Section 8		See Section 8				
For Routine Industrial Use and Handling Applications							

Hazard Scale: **0** = Minimal **1** = Slight **2** = Moderate **3** = Serious **4** = Severe * = Chronic hazard

SYMPTOMS OF OVEREXPOSURE BY ROUTE OF EXPOSURE: No adverse health effects should occur from routine, occupational use of this product's solutions in the manner specified by the manufacturer's instructions. The potential health effects of this product's solutions, via route of exposure, are described below.

INHALATION:

NX#-TD Solution: Inhalation of vapors, mists, or sprays of this component will irritate the nose, throat, and lungs and may cause and adverse reproductive effects. Symptoms may include nausea, vomiting, colic, high blood pressure, and flushing.

<u>All Other Solutions</u>: Inhalation of vapors, mists, or sprays of these solutions may slightly irritate the nose, throat, and lungs. Symptoms are generally alleviated upon breathing fresh air.

SKIN CONTACT:

NX#-TD Solution: Depending on the duration and concentration of overexposure, skin contact can irritate contaminated tissue. Symptoms of skin overexposure may include redness and discomfort. Prolonged or repeated skin exposure may cause dermatitis (dry, red skin)

All Other Solutions: Skin contact may cause mild irritation, which is alleviated upon rinsing.

EYE CONTACT:

NX#-TD Solution: Depending on the duration and concentration of overexposure, eye contact can irritate contaminated tissue. Symptoms of eye overexposure may include redness, tearing, and pain.

All Other Solutions: Eye contact may cause mild irritation, which is alleviated upon rinsing.

SKIN ABSORPTION:

NX#-TD Solution: The Aliphatic Amide constituent of this component can be absorbed through the skin and may cause symptoms described in "Inhalation" and adverse reproductive effects.

All Other Solutions: No constituents in these components are known to be absorbed via intact skin.

INGESTION: Ingestion is not anticipated to be a significant route of exposure for the product's components.

NX#-TD Solution: Ingestion may cause symptoms described in "Inhalation" and adverse reproductive effects.

All Other Solutions: If these solutions are swallowed they may cause gastric distress. Large doses may cause nausea, vomiting, and diarrhea.

11. TOXICOLOGICAL INFORMATION (Continued)

INJECTION: Accidental injection of this product's solutions, via laceration or puncture by a contaminated object, may cause local reddening, tissue swelling, and discomfort in addition to the wound.

HEALTH EFFECTS OR RISKS FROM EXPOSURE: An Explanation in Lay Terms.

NX#-TD Solution: Inhalation, skin absorption, and ingestion of this component may cause nausea, vomiting, colic, high blood pressure, flushing, adverse reproductive effects, and kidney and heart damage. Depending on the duration and concentration of overexposure, skin and eye contact can irritate contaminated tissue.

All Other Solutions: Beyond mild irritation of the skin or eyes, contact with these components does not usually cause acute health effects.

Chronic:

NX#-TD Solution: Prolonged or repeated skin exposure may cause dermatitis (dry, red skin).

All Other Solutions: These components are not known to cause any significant chronic health effects.

TARGET ORGANS:

NX#-TD Solution: Eyes, skin, reproductive system, liver, kidneys, cardiovascular system.

All Other Solutions: Eyes, gastrointestinal tract.

Chronic:

NX#-TD Solution: Skin.

All Other Solutions: None known.

TOXICITY DATA: The following information is available for the constituents in components of this product present in greater that 1 percent concentration and listed in Section 3 (Composition and Information on Ingredients).

ALIPHATIC AMIDE:

Mutation in Microorganisms (bacteria, Salmonella typhimurium) = 600 µg/plate

Cytogenetic Analysis (inhalation, human) = 12,300 μg/m³/1 year

Cytogenetic Analysis (lymphocyte, human) = 100 nmol/L DNA Repair (yeast, Saccharomyces cerevisiae) = 300 mg/L

Sex Chromosome Loss and Non-disjunction (yeast, Saccharomyces cerevisiae) = 25 mg/L

Cytogenetic Analysis (intraperitoneal, mouse) = 40

Dominant Lethal Test (inhalation, rat) = 10,700 μg/m³ Micronucleus Test (intraperitoneal, mouse) μq/kq/24 hours

Mutation in Mammalian Somatic Cells (lymphocyte, mouse) = 5 g/L

Host-Mediated Assay (mouse bacteria, Salmonella typhimurium) = 4250 μg/kg

Standard Draize Test (skin, human) = 100%/24 hours;

Rinsed with Water (eye, rabbit) = 100 mg; Severe

 LC_{50} (inhalation, mouse) = 9400 mg/m³/2 hours; Behavioral: convulsions or effect on seizure threshold, muscle weakness; Lungs, Thorax, or Respiration: dvspnea

LD₅₀ (oral, rat) = 2800 mg/kg

LD₅₀ (oral, mouse) = 2900 mg/kg

LD₅₀ (oral, rabbit) = 5 g/kg

LD₅₀ (skin, rabbit) = 4720 mg/kg LD₅₀ (intraperitoneal, rat) = 1400 mg/kg; Behavioral: somnolence (general depressed activity), muscle weakness; Nutritional and Gross Metabolic: weight loss or decreased weight gain

LD₅₀ (intraperitoneal, mouse) = 650 mg/kg

LD₅₀ (intraperitoneal, rabbit) = 1 g/kg; Liver: other changes; Kidney, Ureter, Bladder: other changes in urine composition; Blood: changes in cell count (unspecified) LD₅₀ (intraperitoneal, cat) = 500 mg/kg; Liver: other

changes; Kidney, Ureter, Bladder: other changes in urine composition: Blood: changes in cell count (unspecified)

 LD_{50} (subcutaneous, rat) = 3800 mg/kg

 LD_{50} (subcutaneous, mouse) = 4500 mg/kg

LD₅₀ (intravenous, rat) = 2 g/kg

LD₅₀ (intravenous, mouse) = 2500 mg/kg

LD₅₀ (intramuscular, mouse) = 3900 mg/kg

LD₅₀ (intravenous, rabbit) = 1800 mg/kg

LD₅₀ (intravenous, dog) = 470 mg/kg

 LD_{50} (intravenous, guinea pig) = 1050 mg/kg

LD (skin, rat) > 3160 mg/kg

TDLo (oral, rat) = 9 mL/kg/12 weeks/intermittent; Liver: hepatitis (hepatocellular necrosis), diffuse, changes in liver weight; Biochemical: Enzyme inhibition, induction, or change in blood or tissue levels: phosphatases

TDLo (oral, rat) = 13 g/kg/15 weeks/continuous; Behavioral: food intake (animal); Liver: changes in liver weight; Nutritional and Gross Metabolic: weight loss or decreased weight gain

TDLo (oral, rat) = 5400 mg/kg/90 days/continuous; Liver: changes in liver weight; Blood: changes in erythrocyte (RBC) count, changes in leukocyte (WBC) count

TDLo (oral, rat) = 4500 mg/kg/10 days/continuous; Liver: other changes; Kidney, Ureter, Bladder: other changes; Nutritional and Gross Metabolic: other changes

ALIPHATIC AMIDE (continued):

TDLo (oral, rat) = 5330 μ L/kg/female 6–15 days after conception; Reproductive: Effects on Embryo or Fetus: fetotoxicity (except death, e.g., stunted fetus); Specific Developmental Abnormalities: musculoskeletal system

TDLo (oral, rat) = 5030 mg/kg/female 6-15 days after conception; Reproductive: Fertility: post-implantation mortality (e.g. dead and/or resorbed implants per total number of implants); Effects on Embryo or Fetus: extraembryonic structures (e.g., placenta, umbilical cord), fetotoxicity (except death, e.g., stunted fetus)

TDLo (oral, rat) = 1500 mg/kg/female 6-20 days after conception; Reproductive: Effects on Embryo or Fetus: fetotoxicity (except death, e.g., stunted fetus)

TDLo (oral, rat) = 3000 μg/kg/female 6-20 days after conception; Reproductive-Specific Developmental Abnormalities: musculoskeletal system

TDLo (skin, rat) = 3600 mg/kg/female 11-13 days after conception; Reproductive: Effects on Embryo or Fetus: fetal death

Toto (skin, rat) = 7552 mg/kg/female 6–15 days after conception; Reproductive: Effects on Embryo or Fetus: fetotoxicity (except death, e.g., stunted fetus), other effects to embryo

TDLo (skin, rat) = 20 g/kg/female 6-15 days after conception; Reproductive: Fertility: pre-implantation mortality (e.g. reduction in number of implants per female; total number of implants per corpora lutea), post-implantation mortality (e.g. dead and/or resorbed implants per total number of implants); Effects on Embryo or Fetus: fetotoxicity (except death, e.g., stunted fetus)

TDLo (skin, rat) = 20 g/kg/female 1-20 days after conception; Reproductive: Fertility: female fertility index (e.g. # females pregnant per # sperm positive females; # females pregnant per # females mated); Effects on Newborn: delayed effects

TDLo (oral, mouse) = 1820 mg/kg/female 6–15 days after conception; Reproductive: Effects on Embryo or Fetus: fetotoxicity (except death, e.g., stunted fetus)

TDLo (oral, rabbit) = 2600 mg/kg/female 6-18 days after conception; Reproductive: Specific Developmental Abnormalities: Central Nervous System, body wall, musculoskeletal system

TDLo (oral, rabbit) = 2600 mg/kg/female 6-18 days after conception; Reproductive: Effects on Embryo or Fetus: fetotoxicity (except death, e.g., stunted fetus)

TDLo (skin, rabbit) = 18 g/kg/2 weeks/intermittent; Nutritional and Gross Metabolic: weight loss or decreased weight gain; Related to Chronic Data: death

TDLo (skin, rabbit) = 5200 mg/kg/female 6-18 days after conception; Reproductive: Effects on Embryo or Fetus: other effects to embryo

TDLo (intraperitoneal, mouse) = 2100 mg/kg/female 11 days after conception; Reproductive: Fertility: postimplantation mortality (e.g. dead and/or resorbed implants per total number of implants); Effects on Embryo or Fetus - fetotoxicity (except death, e.g., stunted fetus)

TDLo (intraperitoneal, mouse) = 15,120 mg/kg/female 1-14 days after conception; Reproductive: Specific Abnormalities: Developmental musculoskeletal system, craniofacial (including nose and tongue), other developmental Abnormalities

ALIPHATIC AMIDE (continued):

TCLo (inhalation, rat) = 800 ppm/6 hours/female 13 weeks pre-mating; Reproductive: Maternal Effects: other effects; Endocrine: effect on menstrual cycle

TCLo (inhalation, rat) = 50 ppm/6 hours/male 13 weeks pre-mating; Reproductive: Paternal Effects: spermatogenesis (incl. genetic material, sperm morphology, motility, and count)

TCLo (inhalation, rat) = 4 mg/m³/4 hours/female 1-19 days after conception; Reproductive: Fertility: preimplantation mortality (e.g. reduction in number of implants per female; total number of implants per corpora lutea); Effects on Embryo or Fetus: fetotoxicity (except death, e.g., stunted fetus), fetal death TCLo (inhalation, rat) = 600 mg/m³/24 hours/female 1–19

days after conception; Reproductive: Effects on Newborn: behavioral

TCLo (inhalation, rat) = 287 ppm/6 hours/female 0-19 days after conception; Reproductive: Fertility: postimplantation mortality (e.g. dead and/or resorbed implants per total number of implants); Effects on Embryo or Fetus: extra-embryonic structures (e.g., placenta, umbilical cord), fetotoxicity (except death, e.g., stunted fetus)

TCLo (inhalation, rat) = 300 ppm/6 hours/female 6-15 days after conception; Reproductive: Effects on Embryo or Fetus: fetotoxicity (except death, e.g., stunted fetus)

= 400 ppm/6 hours/13 (inhalation, rat) weeks/intermittent; Liver: changes in liver weight; Blood: changes in erythrocyte (RBC) count; Biochemical: Enzyme inhibition, induction, or change in blood or tissue levels: transaminases

300 mg/m³/4 hours/26 TCLo (inhalation, rat) = weeks/intermittent; Brain and Coverings: recordings from specific areas of CNS; Behavioral: altered sleep time (including change in righting reflex)

TCLo (inhalation, rat) = $500 \mu g/m^3/24$ hours/60 Kidney, Ureter, Bladder: other days/continuous: changes in urine composition; Biochemical: Enzyme inhibition, induction, or change in blood or tissue levels: cholinesterase; Biochemical: Metabolism (Intermediary): porphyrin including bile pigments

CLo (inhalation, rat) = 2523 ppm/6 h days/intermittent; Related to Chronic Data: death TCLo hours/5

TCLo (inhalation, mouse) = 800 ppm/6 hours/13 weeks/intermittent; Liver: changes in liver weight; Kidney, Ureter, Bladder: changes in bladder weight; Nutritional and Gross Metabolic: weight loss or decreased weight gain

TCLo (inhalation, mouse) = 200 ppm/6 hours/female 13 weeks pre-mating; Reproductive: Maternal Effects: other effects; Endocrine: effect on menstrual cycle

TCLo (inhalation, rabbit) = 450 ppm/6 hours/female 7-19 days after conception; Reproductive: Effects on Embryo or Fetus: fetotoxicity (except death, e.g., stunted fetus); Specific Developmental Abnormalities: body wall, musculoskeletal system

TCLo (inhalation, rabbit) = 450 ppm/8 hours/female 7days after conception; Reproductive: Maternal effects; Specific Effects: other Developmental Abnormalities: musculoskeletal system. gastrointestinal system

11. TOXICOLOGICAL INFORMATION (Continued)

TOXICITY DATA (continued):

ALIPHATIC AMIDE (continued):

LCLo (inhalation, rat) = 5000 ppm/6 hours LDLo (intraperitoneal, guinea pig) = 4 g/kg; Liver: fatty liver

degeneration ALIPHATIC TRIOL:

Skin Irritancy (rabbit) = 500 mg/24 hours; mild

Eye Irritancy (rabbit) = 126 mg; mild Eye Irritancy (rabbit) = 500 mg/24 hours; mild

LD₅₀ (oral, rat) = 12600 mg/kg; general anesthetic, muscle weakness, Liver: other changes

LC₅₀ (inhalation, rat) > 570 mg/m³/1 hour

LD₅₀ (intraperitoneal, rat) = 4420 mg/kg; toxic psychosis; Cardiac; other changes; Kidney, Urethra, Bladder: other changes

LD₅₀ (subcutaneous, rat) = 100 mg/kg

LD₅₀ (intravenous, rat) = 5566 mg/kg

LD₅₀ (oral, mouse) = 4090 mg/kg

LD₅₀ (intraperitoneal, mouse) = 8700 mg/kg

LD₅₀ (subcutaneous, mouse) = 91 mg/kg

 LD_{50} (intravenous, mouse) = 4250 mg/kg

LD₅₀ (oral, rabbit) = 27 g/kg

 LD_{50} (skin, rabbit) > 10 g/kg

LD₅₀ (intravenous, rabbit) = 53 g/kg LD_{50} (oral, guinea pig) = 7750 mg/kg

TDLo (oral, rat) = 16800 mg/kg/28 days/continuous;

Endocrine: changes in adrenal weight TDLo (oral, rat) = 96 g/kg/30 days/intermittent; Blood: changes in leukocyte (WBC) count, changes in serum composition (e.g. TP, bilirubin, cholesterol); Biochemical: Enzyme inhibition, induction, or change in blood or tissue levels: true cholinesterase

TDLo (oral, rat) = 100 mg/kg/male 1 day pre-mating; Reproductive: Fertility: post-implantation mortality

TDLo (intratesticular, rat) = 280 mg/kg/male 2 days premating; Reproductive: Paternal Effects: spermatogenesis, testes, epididymis, sperm duct

TDLo (intratesticular, rat) = 1600 mg/kg/male 1 day premating; Reproductive: male fertility index

TDLo (intratesticular, rat) = 862 mg/kg/male 1 day pre-Reproductive: matina: Paternal Effects: spermatogenesis

TDLo (intratesticular, monkey) = 119 mg/kg/male 1 day pre-mating; Reproductive: Paternal

spermatogenesis, testes, epididymis, sperm duct TDLo (oral, mouse) = 560 g/kg/8 weeks/continuous; Lungs, Thorax, or Respiration: structural or functional change in trachea or bronchi

DNA Inhibition (human, lymphocyte) = 200 mmol/L

Cytogenetic Analysis (oral, rat) = 1 g/kg
POTASSIUM SALT: TDLo (Oral-Man) 214.29 mg/kg: Gastrointestinal: hypermotility, diarrhea, nausea or vomiting

POTASSIUM SALT (continued):

LDLo (Oral-Infant) 938 mg/kg/2 days: Lungs, Thorax, or Respiration: cvanosis, other changes; Nutritional and Gross Metabolic: changes in potassium

LDLo (Oral-Man) 20 mg/kg: Cardiac: (including changes in conduction); Gastrointestinal: nausea or vomiting; Blood: change in clotting factors

TDLo (Oral-Man) 60 mg/kg/day: Gastrointestinal: nausea, vomiting; Change in clotting factors

Standard Draize Test (Eye-Rabbit) 500 mg/24 hours:

LD₅₀ (Oral-Rat) 2600 mg/kg LD₅₀ (Oral-Mouse) 1500 mg/kg

LD₅₀ (Intraperitoneal-Rat) 660 mg/kg

LD₅₀ (Intraperitoneal-Mouse) 620 mg/kg

LD₅₀ (Intravenous-Rat) 142 mg/kg

(Intravenous-Rat) 142 mg/kg: convulsions or effect on seizure threshold; Lungs, Thorax, or Respiration: dyspnea

LD₅₀ (Intravenous-Mouse) 117 mg/kg

LDLo (Oral-Guinea Pig) 2500 mg/kg: Behavioral: changes in motor activity (specific assay), coma; Lungs, Thorax, or Respiration: other changes

(Intraperitoneal-Guinea Pig) Behavioral: changes in motor activity (specific assay), coma Lungs, Thorax, or Respiration: changes

LDLo (Subcutaneous-Guinea Pig) 2550 mg/kg LDLo (Subcutaneous-Pigeon) 2210 mg/kg

LDLo (Subcutaneous-Frog) 2120 mg/kg

LDLo (Intravenous-Guinea Pig) 77 mg/kg LDLo (Parenteral-Guinea Pig) 40 mg/kg

LDLo (Intraarterial-Guinea Pig) 130 mg/kg

TDLo (Oral-Rat) 75.6 gm/kg/6 weeks-continuous: Kidney/Ureter/Bladder: urine volume increased

TDLo (Oral-Rat) 983 gm/kg/78 weeks-continuous: Kidney/Ureter/Bladder: changes in tubules (including acute renal failure, acute tubular necrosis)

TDLo (Oral-Rat) 1536 gm/kg/130 weeks-continuous: Endocrine: adrenal cortex hyperplasia

TDLo (Intracerebral-Rat) 272.7 mg/kg: Biochemical: Neurotransmitters or modulators (putative): dopamine in striatum

DNA Damage (Human-Leukocyte) 1 mmol/L/2 hours Mutation in Microorganisms (Bacteria-Salmonella typhimurium) 100 µg/plate

Mutation in Microorganisms (Yeast-Saccharomyces cerevisiae) 2500 mmol/L

Mutation in Microorganisms (Mouse-Lymphocyte) 2048 Gene Conversion and Mitotic Recombination (Yeast-

Saccharomyces cerevisiae) 400 mmol/L Sex Chromosome Loss and Non-Disjunction (Yeast-

POTASSIUM SALT (continued):

Unscheduled DNA Synthesis (Oral-Rat) 1500 μg/kg Cytogenetic Analysis (Hamster-Lung) 12 gm/L Cytogenetic Analysis (Hamster-Ovary) 140 mmol/L

DNA Damage (Hamster-Ovary) 260 mmol/L

Sister Chromatid Exchange (Hamster-Ovary) 180 mmol/L

ALIPHATIC DIOL:

Skin Irritancy (human) = 500 mg/7 days; mild

Skin Irritancy (human) = 104 mg/3 days/intermittent; moderate

Skin Irritancy (man) = 10%/2 days

TDLo (oral, child) = 79 g/kg/56 weeks/intermittent; Central nervous system effects, BRN

TDLo (parenteral, infant) = 10 g/kg/3 days/continuous; Systemic effects

 LD_{50} (oral, rat) = 20 g/kg

LD₅₀ (oral, mouse) = 22 g/kg

LD₅₀ (oral, rabbit) 18500 mg/kg

 LD_{50} (oral, dog) = 22 g/kg

LD₅₀ (oral, dog) = 22 g/kg LD₅₀ (oral, guinea pig) = 18350 mg/kg LD₅₀ (oral, quail) > 2080 mg/kg

LD₅₀ (intraperitoneal, rat) = 6660 mg/kg

LD₅₀ (intraperitoneal, mouse) = 9718 mg/kg LD₅₀ (subcutaneous, rat) = 22,500 mg/kg

LD₅₀ (intravenous, rat) = 6423 mg/kg

LD₅₀ (intravenous, mouse) = 6630 mg/kg

LD₅₀ (intravenous, rabbit) = 6500 mg/kg

 LD_{50} (intravenous, dog) = 26 g/kg

LDLo (intravenous, chicken) = 27 g/kg; Vascular: other changes

LD₅₀ (intramuscular, rat) = 14 g/kg LD₅₀ (subcutaneous, mouse) = 17,370 mg/kg

LDLo (subcutaneous, guinea pig) = 15500 mg/kg

 LD_{50} (skin, rabbit) = 20800 mg/kg

LDLo (intramuscular, rabbit) = 6300 mg/kg; Behavioral: somnolence (general depressed activity); Behavioral: coma; Lungs, Thorax, or Respiration: respiratory stimulation

TCLo (inhalation, rat) = 2180 mg/m³/6 hours/90 days/intermittent; Behavioral: food intake (animal); Endocrine: changes in spleen weight; Biochemical: Enzyme inhibition, induction, or change in blood or tissue levels: dehydrogenases

TDLo (intraperitoneal, mouse) = 100 mg/kg/15 days preg; Teratogenic effects

TDLo (intraperitoneal, mouse) = 100 mg/kg/11 days preg; Reproductive effects

Eye Irritancy (rabbit) = 100 mg; mild

Eye Irritancy (rabbit) = 500 mg/24 hours; mild

DNA Inhibition (subcutaneous, mouse) = 8000 mg/kg Cytogenetic Analysis (subcutaneous, mouse) = 8000

Cytogenetic Analysis (fibroblast, hamster) = 32 g/L

CARCINOGENIC POTENTIAL OF COMPONENTS: Components of this product are listed by agencies tracking the carcinogenic potential of chemical compounds, as follows:

ALIPHATIC AMIDE: ACGIH-TLV-A4, Not Classifiable as Human Carcinogen; IARC-3, Unclassifiable as to Carcinogenicity in Humans.

Saccharomyces cerevisiae) 300 mmol/L

The other constituents in the solutions of this product are not found on the following lists: U.S. EPA, U.S. NTP, U.S. OSHA, U.S. NIOSH, GERMAN MAK, IARC, or ACGIH and therefore are neither considered to be nor suspected to be cancer causing agents by these agencies.

IRRITANCY OF PRODUCT: NX#-TD Solution: Depending on the duration and concentration of overexposure, skin and eye contact can irritate contaminated tissue.

All Other Solutions: Contact with the skin or eyes may cause mild irritation, which is alleviated upon rinsing.

SENSITIZATION TO THE PRODUCT: These solutions are not known to cause skin or respiratory sensitization in

REPRODUCTIVE TOXICITY INFORMATION: The components of these products are not reported to cause mutagenic, embryotoxic, teratogenic, or adverse reproductive effects in humans.

Embryotoxicity: Clinical studies on test animals exposed to relatively high doses of the Aliphatic Amide, component of these products indicate extra-embryonic structures.

Teratogenicity: Clinical studies on test animals exposed to relatively high doses of the Aliphatic Amide component of these products indicate developmental abnormalities of the musculoskeletal system, central nervous system, gastrointestinal system, body wall, and craniofacial area.

Reproductive Toxicity: Clinical studies on test animals exposed to relatively high doses of the Aliphatic Amide component of this product indicate adverse reproductive effects such as stunted fetus, pre-implantation mortality, post-implantation mortality, changes in female fertility index, effects on menstrual cycle, effects on spermatogenesis, and fetal death.

ACGIH BIOLOGICAL EXPOSURE INDICES: Currently, there are ACGIH Biological Exposure Indices (BEIs) applicable to components of this product, as follows:

1 ,		
CHEMICAL DETERMINANT	SAMPLING TIME	BEI
ALIPHATIC AMIDE		
•N-Methylformamide in urine	•End of sift	40 mg/g creatinine

12. ECOLOGICAL INFORMATION

ALL WORK PRACTICES MUST BE AIMED AT ELIMINATING ENVIRONMENTAL CONTAMINATION.

MOBILITY: This product has not been tested for mobility in soil. The following information is available for some constituents:

ALIPHATIC AMIDE:

The Koc of this compound is estimated as 7, using a measured log Kow of -1.01 and a regression-derived equation. According to a classification scheme, this estimated Koc value suggests that this material is expected to have very high mobility in soil.

ALIPHATIC TRIOL:

Based on an experimental log octanol/water partition coefficient of -1.76 and its water solubility, 1,220,000 mg/L at 5°C, soil adsorption coefficients for Aliphatic Triol can be estimated at 3 and 2, respectively, using regression-derived equations. The magnitude of these values indicate that Aliphatic Triol will display very high mobility in soil.

ALIPHATIC DIOL:

The Koc of Aliphatic Diol is estimated as 8, using a log Kow of -0.92 and a regression-derived equation. According to a classification scheme, this estimated Koc value suggests that Aliphatic Diol is expected to have very high mobility in soil.

<u>PERSISTENCE AND BIODEGRADABILITY</u>: This product has not been tested for persistence or biodegradability. It is expected that the constituents of this product will slowly degrade in the environment and form a variety of organic and inorganic materials; however, no specific information is known. Data for some constituents of this product are available as follows:

ALIPHATIC AMIDE:

If released to air, a vapor pressure of 3.9 mm Hg at 25°C indicates this compound will exist solely as a vapor in the ambient atmosphere. Vapor-phase material will be degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 22 hours. If released to soil, this compound is expected to have very high mobility based upon an estimated Koc of 7. Volatilization from moist soil surfaces is not expected to be an important fate process based upon a Henry's Law constant of 7.4X10-8 atm-cu m/mole. This compound may volatilize from dry soil surfaces based upon its vapor pressure. If released into water, this material is not expected to adsorb to suspended solids and sediment based upon the estimated Koc. An aerobic unacclimated and acclimated river die-away test showed that Aliphatic Amide at an initial concentration of 30 mg/L completely disappeared within 6 and 3 days, respectively. Thus, this compound is expected to rapidly degrade in the environment. Volatilization from water surfaces is not expected to be an important fate process based upon this compound's Henry's Law constant. Hydrolysis is not expected to occur due to the slow rate of reaction for amide functional groups.

ALIPHATIC TRIOL:

If released to soil, this compound is expected to undergo rapid biodegradation under aerobic conditions. It is expected to display very high mobility in soil and it is not expected to significantly volatilize to the atmosphere. If released to water, this material is expected to rapidly degrade under aerobic conditions. Biodegradation in seawater and under anaerobic conditions is also expected. This compound is not expected to bioconcentrate is fish and aquatic organisms nor is it expected to adsorb to sediment and suspended organic matter. Volatilization to the atmosphere is expected to be slower then for water itself. If released to the atmosphere, this material may undergo a gas-phase oxidation with photochemically produced hydroxyl radicals with a half-life of 33 hrs. It may also undergo atmospheric removal by wet deposition processes.

POLYETHYLENE GLYCOL:

This compound is readily soluble in water. This compound is chemically identical to the natural amino acid L-Serine and can therefore be degraded microbiologically. **ALIPHATIC DIOL:**

Based on a classification scheme, an estimated Koc value of 8, determined from a log Kow of -0.92 and a regression-derived equation, indicates that this compound is expected to have very high mobility in soil. Volatilization of this material from moist soil surfaces is not expected to be an important fate process given an estimated Henry's Law constant of 1.3X10-8 atm-cu m/mole, derived from its vapor pressure, 0.13 mmHg, and water solubility, 1X10+6 mg/liter. This compound is not expected to volatilize from dry soil surfaces based upon its vapor pressure. Laboratory experiments using agricultural soils from South Carolina conducted at 22 deg C and a fortification of 1,000 ppm this material, yielded 73-78% mineralization during a 51 day incubation period, suggesting that biodegradation will be an important fate process in soils. Based on a classification scheme, an estimated Koc value of 8, determined from a log Kow of -0.92 and a regression-derived equation, indicates that this compound is not expected to adsorb to suspended solids and sediment. Volatilization from water surfaces is not expected based upon an estimated Henry's Law constant of 1.3X10-8 atm-cu m/mole, derived from its vapor pressure, 0.13 mmHg, and water solubility, 1X10+6 mg/L. Numerous screening studies using wastewater or sewage inoculum as seed, suggests that Aliphatic Diol will be degraded readily under aqueous environments. According to a model of gas/particle partitioning of semi-volatile organic compounds in the atmosphere, this compound, which has a vapor pressure of 0.13 mmHg at 25°C, is expected to exist solely as a vapor in the ambient atmosphere. Vapor-phase material is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 32 hours, calculated from its rate constant of 1.2X10-11 cu cm/molecule-sec at 25°C

<u>BIO-ACCUMULATION POTENTIAL</u>: This product has not been tested for bio-accumulation potential. The following information is available for some constituents.

ALIPHATIC AMIDE:

An estimated BCF of 3 was calculated for this material, using a log Kow of -1.01 and a regression-derived equation. According to a classification scheme, this BCF suggests the potential for bioconcentration in aquatic organisms is low.

ALIPHATIC TRIOL:

Based on an experimental log octanol/water partition coefficient of -1.76 and its water solubility, 1,220,000 mg/L at 5°C, bioconcentration factors for this compound can be estimated at 3 and 0.2, respectively, using regression-derived equations. The magnitude of these values indicate that bioconcentration of this material in fish and aquatic organisms will not be significant. Log K_{OW} = -1.76.

ALIPHATIC DIOL:

An estimated BCF of 3 was calculated for this compound, using a log Kow of -0.92 and a regression-derived equation. According to a classification scheme, this BCF suggests the potential for bioconcentration in aquatic organisms is low.

<u>ECOTOXICITY</u>: This product has not been tested for aquatic or animal toxicity. All releases to terrestrial, atmospheric and aquatic environments should be avoided. The aquatic toxicity data for some constituents of this product are available on the following below.

ALIPHATIC AMIDE:

NOEC (Selenastrum capricomutum algae) 14 days =

480 mg/L NOEC (*Daphnia magna* crustacean) 48 hours = 6,000

mg/L

NOEC (*Orconectes immunis*) 24 hours = 3,680 mg/L

(mortality)
NOEL (*Daphnia magna Straus*) 28 days = 1,140 mg/L (mortality)

EC $_{10}$ (*Pseudomonas putida* bacteria) 2,210 mg/L EC $_{50}$ (Chlorella pyrenoidosa algae) = 890 mg/L (growth inhibition)

EC₅₀ (phosphoreum Photobacterium) 5 minutes = 20,000 mg/L

EC₅₀ (*Anabaena variabilis* Photobacterium) 10 days = 240 mg/L

EC₅₀ (*Anabaena variabilis* Photobacterium) 10 days = 570 mg/L

ALIPHATIC AMIDE (continued):

EC₅₀ (Daphnia magna crustacean) 24 hours = 19,800 mg/L

EC₅₀ (*Daphnia magna* crustacean) 48 hours = 15,700 mg/L

EC₅₀ (Daphnia magna crustacean) 24 hours = 26,300 mg/L

EC₅₀ (Daphnia magna crustacean) 48 hours = 14,500 mg/L

 EC_{50} (Daphnia magna Straus) 21 days = 3,721 mg/L LC_{50} (Daphnia magna Straus) 24 hours = 16,150 mg/L LC_{50} (Daphnia magna Straus) 48 hours = 12,350 mg/L)

 LC_{50} (Daphnia magna) 48 hours = 14,400 mg/L LC_{50} (brown shrimp) 48 hours = > 100 mg/L

LC₅₀ (water fleas) 48 hours = 14,530 mg/L LC₅₀ (water fleas) 3 hours = 13,000 mg/L LC₅₀ (Leuciscus idus) 48 hours = > 500 mg/L

ALIPHATIC TRIOL:

EC₀ (Pseudomonas putida bacteria) 16 hours = >10,000 mg/L

EC₀ (Microcystis aeruginosa algae) 8 days = 2,900 mg/L EC₀ (Scenedesmus quadricauda green algae) 7 days = > 10.000 mg/L

EC₀ (Entosiphon sulcatum protozoa) 72 hours = 3,200 mg/L

EC₀ (Uronema parduczi Chatton-Lwoff protozoa) = > 10,000 mg/L

LC₅₀ (goldfish) 24 hours = > 5,000 mg/

POTASSIUM SALT:

EC₅₀ (Daphnia magna Water flea) 24 hours = 15.12 mM; Conditions: freshwater; static; Effect: intoxication, immobile

LC $_{50}$ (Ceriodaphnia dubia Water flea) 48 hours = 630,000 μ g/L (95% confidence limit: 580,000 to 670,000 μ g/L), Conditions: freshwater; static

12. ECOLOGICAL INFORMATION (Continued)

ECOTOXICITY (continued):

POTASSIUM SALT (continued):

LC $_{50}$ (Ceriodaphnia dubia Water flea) 48 hours = 630,000 μ g/L (95% confidence limit: 580,000 to 630,000 μ g/L), Conditions: freshwater; static

LC₅₀ (*Chironomus riparius* Midge); 96 hours = 4.81 g/L (95% confidence limit: 3.93 to 5.68 g/L), Conditions: freshwater; /conditions of bioassay not specified

LC $_{50}$ (*Chironomus* tentans Midge, size 1.56 mm, 1st instar); 96 hours = 1,250,000 $\mu g/L$, Conditions: freshwater; static

LC₅₀ (*Chironomus* tentans Midge, size 4.42 mm, 2nd-3rd instar) 96 hours = 1,770,000 µg/L (95% confidence limit: 590000 to 5,260,000 1,250,000 µg/L g/L); Conditions: freshwater; static

 LC_{50} (*Chironomus* tentans Midge, size 6.07 mm, 3rd instar) 96 hours = 2,890,000 μ g/L (95% confidence limit: 2,390,000 to 3,500,000 μ g/L); Conditions: freshwater: static

LC₅₀ (*Chironomus* tentans Midge, size 5.86 mm, 3rd instar) 96 hours = 3,170,000 μ g/L (95% confidence limit: 2,290,000 to 4,400,000 μ g/L); Conditions: freshwater; static

LC₅₀ (*Chironomus* tentans Midge, size 5.78 mm, 3rd instar) 96 hours = 5,000,000 μ g/L (95% confidence limit: 4,160,000 to 6,010,000 μ g/L); Conditions: freshwater; static

LC₅₀ (*Chironomus* tentans Midge, size 5.01 mm, 3rd instar) 96 hours = 5,110,000 μ g/L (95% confidence limit: 4,180,000 to 6,240,000 μ g/L); Conditions: freshwater; static

LC $_{50}$ (*Chironomus* tentans Midge, size 9.41 mm) 96 hours = 5,300,000 μ g/L (95% confidence limit: 4,330,000 to 6,520,000 μ g/L); Conditions: freshwater; static

LC $_{50}$ (*Chironomus* tentans Midge, size 8.67 mm) 96 hours = 5,360,000 $\mu g/L$ (95% confidence limit: 4,430,000 to 6,490,000 $\mu g/L$); Conditions: freshwater; static

LC₅₀ (*Chironomus* tentans Midge, size 10.87 mm, 3rd-4th instar) 96 hours = 6,190,000 µg/L (95% confidence limit: 5,370,000 to 7,130,000 µg/L); Conditions: freshwater; static

LC $_{50}$ (*Chironomus* tentans Midge, size 9.42 mm, 3rd-4th instar) 96 hours = 6,200,000 μ g/L (95% confidence limit: 4,800,000 to 7,890,000 μ g/L); Conditions: freshwater; static

LC₅₀ (Daphnia magna Water flea) 96 hours = 29 mg/L; Conditions: freshwater: static

LC₅₀ (*Chironomus* tentans Midge, size 7.84 mm, 3rd instar) 96 hours = 6,280,000 μ g/L (95% confidence limit: 5,260,000 to 7,500,000 μ g/L); Conditions: freshwater; static

LC₅₀ (*Chironomus* tentans Midge, size 10.43 mm, 3rd instar) 96 hours = 6,830,000 μ g/L (95% confidence limit: 6,380,000 to 7,310,000 μ g/L); Conditions: freshwater; static

POTASSIUM SALT (continued):

LC₅₀ (Daphnia magna Water flea) 72 hours = 117 mg/L; Conditions: freshwater; static

EC₅₀ (Daphnia magna Water flea) 24 hr = 7350 μmol/L; Conditions: freshwater; /conditions of bioassay not specified/; Effect: intoxication, immobile

EC₅₀ (Daphnia magna Water flea) 48 hours = 141,460 μg/L (95% confidence limit: 95300 to 170700 μg/L); Conditions: freshwater; static, Effect: intoxication, immobile

EC $_{50}$ (Daphnia magna Water flea 24 hours = 327,940 μ g/L (95% confidence limit: 248,600 to 407,200 μ g/L); Conditions: freshwater; static; Effect: intoxication, immobile

LC₅₀ (Daphnia magna Water flea, 4th instar or adult) 24 hours = 343,000 μg/L; Conditions: freshwater; static

LC₅₀ (Daphnia magna Water flea, 4th instar or adult) 48 hours = 357,000 µg/L; Conditions: freshwater; static; Concentration

LC $_{50}$ (Daphnia magna Water flea, < 24 hr) 48 hours = 660,000 μg/L (95% confidence limit: 440,000 to 880,000 μg/L); Conditions: freshwater; static

LC₅₀ (*Daphnia magna* Water flea, < 24) 24 hours = 740,000 μg/L (95% confidence limit: 580,000 to 880,000 μg/L); Conditions: freshwater; static

LC₅₀ (*Hyalella azteca* Scud) 96 hours = 0.41 g/L (95% confidence limit: 0.35 to 0.49 g/L); Conditions: freshwater; flow-through

LC₅₀ (Hyalella azteca Scud, size 1.85 mm) 96 hours = 0.54 g/L (95% confidence limit: 0.47 to 0.61 g/L); Conditions: freshwater; flow-through

LC₅₀ (*Hyalella azteca* Scud) 72 hours = 0.63 g/L; Conditions: freshwater; flow-through

LC₅₀ (*Hyalella azteca* Scud) 96 hours = 134,000 μg/L; Conditions: freshwater; renewal; formulated product

LC₅₀ (Hyalella azteca Scud) 96 hours = 141,900 μg/L (95% confidence limit: 100,700 to 199,800 μg/L); Conditions: freshwater; static

LC₅₀ (Gambusia affinis Western mosquitofish, female) 96 hours = 435,000 μg/L; Conditions: freshwater;

LC₅₀ (Gambusia affinis Western mosquitofish, female) 48 hours = 1,990,000 μg/L; Conditions: freshwater; static

LC₅₀ (Gambusia affinis Western mosquitofish, female) 24 hours = 4,700,000 μg/L; Conditions: freshwater; static

LC₅₀ (*Oncorhynchus mykis*s Rainbow trout, donaldson trout, size 5.0-6.0 cm) 24 hours = 1191000 μg/L (95% confidence limit: 923,000 to 1,536,000 μg/L); Conditions: freshwater; static

POTASSIUM SALT (continued):

LC₅₀ (Lepomis macrochirus Bluegill, size 5.3-7.2 cm, wt 3.5-3.9 g) 96 hours = 2,010,000 μg/L; Conditions: freshwater; static; Effect: mortality, survival

LC₅₀ (Oncorhynchus mykiss Rainbow trout, donaldson trout, wt 0.8-1.2 g) 48 hours = 1,610,000 µg/L (95% confidence limit: 1,223,000 to 2,119,000 µg/L); Conditions: freshwater; static

LC₅₀ (*Pimephales promelas* Fathead minnow) 96 hours = 880,000 μ g/L (95% confidence limit: 750,000 to 1,020,000 μ g/L) 880,000 μ g/L (95% confidence limit: 750,000 to 1,020,000 μ g/L); Conditions: freshwater; static

LC₅₀ (*Hyalella azteca* Scud) 48 hours = 0.54 g/L; Conditions: freshwater; flow-through

LC₅₀ (*Pimephales promelas* Fathead minnow) 48 hours = 910,000 μg/L (95% confidence limit: 750,000 to 1,090,000 μg/L); Conditions: freshwater; static

LC₅₀ (*Pimephales promelas* Fathead minnow) 24 hours = 950,000 μg/L (95% confidence limit: 750,000 to 1,090,000 μg/L); Conditions: freshwater; static

LC₅₀ (*Pimephales promelas* Fathead minnow, size 1.5-2.5 cm) 24 hours = 2,465,000 μg/L (95% confidence limit: 2,133,000 to 2,850,000 μg/L); Conditions: freshwater; static

LC₅₀ (Eisenia andrei Earthworm, adult) direct application using artificial soil, 14 days = 5595.0 mg/kg soil (5338.4-5863.9 mg/kg soil)

ALIPHATIC DIOL:

EC₅₀ (*Photobacterium phosphoreum*, bacteria) 30 minutes = 26,800 mg/L

TD (Chlorella pyrenoidosa, algae) = 92,000 mg/L

EC₀ (*Daphnia magna*, crustacean) 48 hours= < 4,295 mg/L

EC₅₀ (Daphnia magna, crustacean) 48 hr = 34,400 mg/L EC₁₀₀ (Daphnia magna, crustacean) 48 hours = 50,000 mg/L

EC₅₀ (Daphnia magna, crustacean) 24 hours = > 10,000 mg/L

EC₁₀₀ (*Daphnia magna*, crustacean) 24 hours = > 10,000 mg/L

EC₅₀ (*Nitocra spinipes*, crustacean) 96 hours = > 10,000 mg/L

LC₅₀ (Lebistes reticulatus, guppy) 48 hr > 10,000 mg/L LC₅₀ (Carassius auratus) 24 hours = > 5,000 mg/L LC₅₀ (Salmo gairdneri) 24 hours = 50,000 mg/L

LC₅₀ (*Pimephales promelas*) 96 hours = 54,900 mg/L LC₅₀ (*Artemia salina*) 24 hours = >10,000 mg/L

LC₁₀₀ (*Pimephales promelas*) 96 hours = 65,610 mg/L NOEC (*Pimephales promelas*) 96 hours < 47,829 mg/L fingerling trout: at 50,000 mg/l at 10°C: no mortality or

apparent signs of stress were produced during a 25-hr exposure period (static bioassay)

RESULTS OF PBT AND vPvB ASSESSMENT: No data available. PBT and vPvB assessments are part of the chemical safety report required for some substances in European Union Regulation (EC) 1907/2006, Article 14. OTHER ADVERSE EFFECTS: This product does not contain any constituents with known ozone depletion potential. ENVIRONMENTAL EXPOSURE CONTROLS: Controls should be engineered to prevent release to the environment, including procedures to prevent spills, atmospheric release and release to waterways.

13. DISPOSAL CONSIDERATIONS

WASTE TREATMENT/DISPOSAL METHODS: Do NOT dispose of any solution of this product by pouring down the drain. It is the responsibility of the generator to determine at the time of disposal whether the product meets the criteria of a hazardous waste per regulations of the area in which the waste is generated and/or disposed of. Waste disposal must be in accordance with appropriate international, national, state, and local regulations. This product, if unaltered by use, may be disposed of by treatment at a permitted facility or as advised by your local hazardous waste regulatory authority. Shipment of wastes must be done with appropriately permitted and registered transporters.

<u>DISPOSAL CONTAINERS</u>: Waste materials must be placed in and shipped in appropriate 5-gallon or 55-gallon poly or metal waste pails or drums. Permeable cardboard containers are not appropriate and should not be used. Ensure that any required marking or labeling of the containers be done to all applicable regulations.

<u>PRECAUTIONS TO BE FOLLOWED DURING WASTE HANDLING</u>: Wear proper protective equipment when handling waste materials.

U.S. EPA WASTE NUMBER: Not applicable.

<u>EWC WASTE CODE</u>: Wastes from research, diagnoses, treatment, or preventions of disease involving animals: chemicals other than containing dangerous substances: 18-02-06

14. TRANSPORTATION INFORMATION

This product is not classified under any jurisdiction as Dangerous Goods and has no UN Number, Hazard Class or Packing Group or Special Precautions for User.

<u>U.S. DEPARTMENT OF TRANSPORTATION</u>: This product is NOT classified as dangerous goods, per U.S. DOT regulations, under 49 CFR 172.101.

<u>TRANSPORT CANADA</u>: This product is NOT classified as Dangerous Goods, per the Transportation of Dangerous Goods regulations.

<u>INTERNATIONAL AIR TRANSPORT ASSOCIATION/ICAO (IATA/ICAO)</u>: This product is NOT classified as dangerous goods, per rules of IATA.

INTERNATIONAL MARITIME ORGANIZATION (IMO): This product is NOT dangerous goods, per the rules of IMO.

<u>UNITED NATIONS ECONOMIC COMMISSION FOR EUROPE (UNECE)</u>: This product is NOT classified as dangerous goods, per the European Agreement Concerning the International Carriage of Dangerous Goods by Road (ADR).

<u>AUSTRALIAN FEDERAL OFFICE OF ROAD SAFETY</u>: This product is NOT dangerous goods, per the Code for the Transportation of Dangerous Goods by Road or Rail.

TRANSPORT IN BULK ACCORDING TO THE IBC CODE: See the information under the individual jurisdiction listings for IBC information.

<u>ENVIRONMENTAL HAZARDS</u>: This product is neither environmentally hazardous according to the criteria of the UN Model Regulations (as reflected in the IMDG Code, ADR, RID, and ADN) nor a marine pollutant according to the IMDG Code.

15. REGULATORY INFORMATION

ADDITIONAL U.S. REGULATIONS:

<u>U.S. SARA REPORTING REQUIREMENTS</u>: The constituents in this product's solutions are subject to Sections 302, 304, and 313 reporting requirements under the Superfund Amendment and Reauthorization Act, as follows:

CHEMICAL NAME	SARA 302	SARA 304	SARA 313
	(40 CFR 355, Appendix A)	(40 CFR Table 302.4)	(40 CFR 372.65)
Aliphatic Amide	No	No	Yes

<u>U.S. SARA THRESHOLD PLANNING QUANTITY</u>: There are no specific Threshold Planning Quantities for the constituents in this product's solutions. The default Federal MSDS submission and inventory requirement filing threshold of 10,000 lb (4,540 kg) may apply, per 40 CFR 370.20.

U.S. CERCLA REPORTABLE QUANTITY (RQ): Aliphatic Amide = 100 lb (45.4 kg).

<u>U.S. TSCA INVENTORY STATUS</u>: The constituents in the solutions of this product listed in Section 3 (Composition and Information on Ingredients) are on the TSCA Inventory.

OTHER U.S. FEDERAL REGULATIONS: Aliphatic Amide is listed as a hazardous air pollutant (HAP) generally known or suspected to cause serious health problems. The Clean Air Act, as amended in 1990, directs EPA to set standards requiring major sources to sharply reduce routine emissions of toxic pollutants. EPA is required to establish and phase in specific performance based standards for all air emission sources that emit one or more of the listed pollutants. Aliphatic Amide is included on this list.

CALIFORNIA SAFE DRINKING WATER AND TOXIC ENFORCEMENT ACT (PROPOSITION 65): No constituent in the solutions of this product is on the California Proposition 65 lists.

ADDITIONAL CANADIAN REGULATIONS:

<u>CANADIAN DSL/NDSL INVENTORY STATUS</u>: The constituents in this product's solutions are listed on the DSL Inventory or are exempt.

OTHER CANADIAN REGULATIONS: Not applicable.

CANADIAN WHMIS CLASSIFICATION AND SYMBOLS:

NX#-TD Solution: Class D2A: Poisonous and Infectious Material, Other Effects, Very Toxic; Reproductive Toxicity

All Other Solutions: Not applicable.

ADDITIONAL EUROPEAN UNION REGULATIONS:

<u>SAFETY, HEALTH, AND ENVIRONMENTAL REGULATIONS/LEGISLATION SPECIFIC FOR THE PRODUCT</u>: Currently, there is no specific legislation pertaining to this product.

<u>CHEMICAL SAFETY ASSESSMENT</u>: No data available. The chemical safety assessment is required for some substances according to European Union Regulation (EC) 1907/2006, Article 14.

ADDITIONAL AUSTRALIAN REGULATIONS:

AUSTRALIAN INVENTORY OF CHEMICAL SUBSTANCES (AICS) STATUS: The constituents in the solutions of this product are on the AICS. Hydrates of listed compounds and biological materials are exempt from listing. Any chemical not included in AICS is regarded as a new industrial chemical unless it is outside the scope of the Industrial Chemicals (Notification and Assessment) Act 1989 or is otherwise exempt from notification. New industrial chemicals must be notified and assessed before being manufactured or imported into Australia.

15. REGULATORY INFORMATION (Continued)

ADDITIONAL AUSTRALIAN REGULATIONS (continued):

<u>HAZARDOUS SUBSTANCES INFORMATION SYSTEM (HSIS)</u>: The Aliphatic Amide component of this product is listed in the HSIS.

STANDARD FOR THE UNIFORM SCHEDULING OF MEDICINES AND POISONS:

NX#-TD Solution: Schedule 6

All Other Solutions: Not applicable.

ADDITIONAL LABELING:

NX#-TD Solution: For advice, contact a Poisons Information Centre (Phone e.g. Australia 131 126; New Zealand 03 4747 000) or a doctor (at once). Avoid contact with eyes. Avoid contact with skin. Avoid breathing vapour or spray mist.

All Other Solutions: Not applicable.

ADDITIONAL JAPANESE REGULATIONS:

<u>JAPANESE ENCS</u>: The constituents in this product's solutions are on the ENCS Inventory as indicated in composition tables in Section 3 (Composition and Information on Ingredients).

JAPANESE MINISTRY OF ECONOMY, TRADE, AND INDUSTRY (METI) STATUS: There is Biodegradation and Bioconcentration information from tests conducted according to the Chemical Substances Control Law on the following components: Aliphatic Amide. There is Mutagenicity information from tests conducted according to the Industrial Safety and Health Law on the following components: Aliphatic Amide.

16. OTHER INFORMATION

US ANSI LABELING (Z129.1; Provided to Summarize Occupational Hazard Information):

NX#-TD Solution: WARNING! SUSPECT REPRODUCTIVE HAZARD; CONTAINS MATERIAL (Aliphatic Amide) THAT MAY INJURE UNBORN CHILD. MAY CAUSE SKIN AND EYE IRRITATION. MAY CAUSE DISCOMFORT IF SWALLOWED OR INHALED. Do not taste or swallow. Avoid skin or eye contact. Avoid prolonged or repeated skin contact. Avoid breathing mists or sprays. Keep container closed. Use only with adequate ventilation. Wash thoroughly after handling. Wear gloves and goggles. FIRST-AID: In case of contact, immediately flush skin or eyes with plenty of water. If inhaled, remove to fresh air. If ingested, do not induce vomiting. Get medical attention if necessary. In case of fire: Use water fog, dry chemical, CO2, or "alcohol" foam. IN CASE OF SPILL: Absorb spill with polypads and place in suitable container. Consult Material Safety Data Sheet for additional information.

All Other Solutions: CAUTION! MAY CAUSE SKIN AND EYE IRRITATION. MAY CAUSE DISCOMFORT IF SWALLOWED OR INHALED. Do not taste or swallow. Avoid skin or eye contact. Avoid prolonged or repeated skin contact. Avoid breathing mists or sprays. Keep container closed. Use only with adequate ventilation. Wash thoroughly after handling. Wear gloves and goggles. FIRST-AID: In case of contact, immediately flush skin or eyes with plenty of water. If inhaled, remove to fresh air. If ingested, do not induce vomiting. Get medical attention if necessary. IN CASE OF FIRE: Use water fog, dry chemical, CO₂, or "alcohol" foam. IN CASE OF SPILL: Absorb spill with polypads and place in suitable container. Consult Material Safety Data Sheet for additional information.

GLOBAL HARMONIZATION, EU CLP REGULATION (EC) 1272/2008, AND JAPAN JIS Z7250:2005 FULL TEXT:

NX#-TD Solution:

Classification: Reproductive Toxicity Category 1B, Eye Irritation Category 2.

Hazard Statements: H319: Causes serious eye irritation. H360D: May damage the unborn child.

Precautionary Statements:

Prevention: P201: Obtain special instructions before use. P202: Do not handle until all safety precautions have been read and understood. P280: Wear protective gloves, protective clothing, and eye protection. P281: Use personal protective equipment as required.

Response: P305 + P351 + P338: IF IN EYES: Rinse continuously with water for several minutes. Remove contact lenses if present and easy to do—continue rinsing. P308 + P313: IF exposed or concerned: Get medical advice/attention. P337 + P313: Get medical advice/attention.

Storage: P405: Store locked up.

Disposal: P501: Dispose of contents/container to a properly permitted hazardous waste facility using a licensed waste carrier and according to all local, national, and international regulations.

All Other Solutions:

<u>Classification</u>: Not applicable. <u>Hazard Statements</u>: Not applicable.

Precautionary Statements: Not applicable.

EU 67/548/EEC AND 2001/59/EC AUSTRALIAN NOHSC FULL TEXT:

NX#-TD Solution:

Classification: Toxic to Reproduction Category 2, Irritant.

Risk Phrases: R36: Irritating to eyes. R61: May cause harm to the unborn child.

<u>Safety Phrases</u>: S45: In case of accident or if you feel unwell, seek medical advice immediately (show the label where possible). S53: Avoid exposure—obtain special instructions before use.

All Other Solutions:

Classification: Not applicable. Risk Phrases: Not applicable. Safety Phrases: Not applicable.

COMPONENT GLOBAL HARMONIZATION, EU CLP REGULATION (EC) 1272/2008 AND JAPAN JIS Z7250:2005 FULL TEXT:

Aliphatic Amide:

Classification: Reproductive Toxicity Category 1B, Acute Toxicity Category 4, Eye Irritation Category 2

<u>Hazard Statements</u>: H312: Harmful in contact with skin. H319: Causes serious eye irritation. H332: Harmful if inhaled. H360D: May damage the unborn child.

16. OTHER INFORMATION (Continued)

COMPONENT EU 67/548/EEC AND AUSTRALIA NOHSC FULL TEXT:

Aliphatic Amide:

Classification: Toxic to Reproduction Category 2, Harmful, Irritant.

Risk Phrases: R20/21: Harmful by inhalation and in contact with skin. R36: Irritating to eyes. R61: May cause harm to the

unborn child. REVISION DETAILS: New.

REFERENCES AND DATA SOURCES: Contact the supplier for information.

METHODS OF EVALUATING INFORMATION FOR THE PURPOSE OF CLASSIFICATION: Bridging principles were used to

classify this product.

PREPARED BY:

CHEMICAL SAFETY ASSOCIATES. Inc.

PO Box 1961, Hilo, HI 96721 • 800/441-3365 • 808/969-4846

DEFINITIONS OF TERMS

A large number of abbreviations and acronyms appear on a MSDS. Some of these, which are commonly used, include the following:

EXPOSURE LIMITS IN AIR:

CEILING LEVEL: The concentration that shall not be exceeded during any part of the working exposure.

DFG MAKs: Federal Republic of Germany Maximum Concentration Values in the workplace. Exposure limits are given as TWA (Time-Weighted Average) or PEAK (shortterm exposure) values

DFG MAK Germ Cell Mutagen Categories: 1: Germ cell mutagens that have been shown to increase the mutant frequency in the progeny of exposed humans. 2: Germ cell mutagens that have been shown to increase the mutant frequency in the progeny of exposed mammals. 3A: Substances that have been shown to induce genetic damage in germ cells of human of animals, or which produce mutagenic effects in somatic cells of mammals in vivo and have been shown to reach the germ cells in an active form. 3B: Substances that are suspected of being germ cell mutagens because of their genotoxic effects in mammalian somatic cell in vivo; in exceptional cases, substances for which there are no in vivo data, but that are clearly mutagenic in vitro and structurally related to known in vivo mutagens. 4: Not applicable (Category 4 carcinogenic substances are those with non-genotoxic mechanisms of action. By definition, germ cell mutagens are genotoxic. Therefore, a Category 4 for germ cell mutagens cannot apply. At some time in the future, it is conceivable that a Category 4 could be established for genotoxic substances with primary targets other than DNA [e.g. purely aneugenic substances] if research results make this seem sensible.) 5: Germ cell mutagens, the potency of which is considered to be so low that, provided the MAK value is observed, their contribution to genetic risk for humans is expected not to be significant.

DFG MAK Pregnancy Risk Group Classification: Group A: A risk of damage to the developing embryo or fetus has been unequivocally demonstrated. Exposure of pregnant women can lead to damage of the developing organism, even when MAK and BAT (Biological Tolerance Value for Working Materials) values are observed. Group B: Currently available information indicates a risk of damage to the developing embryo or fetus must be considered to be probable. Damage to the developing organism cannot be excluded when pregnant women are exposed, even when MAK and BAT values are

DFG MAK Pregnancy Risk Group Classification (continued): Group C: There is no reason to fear a risk of damage to the developing embryo or fetus when MAK and BAT values are observed. Group D: Classification in one of the groups A-C is not yet possible because, although the data available may indicate a trend, they are not sufficient for final evaluation.

IDLH: Immediately Dangerous to Life and Health. This level represents a concentration from which one can escape within 30-minutes without suffering escape-preventing or permanent injury.

LOQ: Limit of Quantitation

NE: Not Established. When no exposure guidelines are established, an entry of NE is made for reference.

NIC: Notice of Intended Change.

NIOSH CEILING: The exposure that shall not be exceeded during any part of the workday. If instantaneous monitoring is not feasible, the ceiling shall be assumed as a 15-minute TWA exposure (unless otherwise specified) that shall not be exceeded at any time during a workday.

NIOSH RELs: NIOSH's Recommended Exposure Limits

PEL: OSHA's Permissible Exposure Limits. This exposure value means exactly the same as a TLV, except that it is enforceable by OSHA. The OSHA Permissible Exposure Limits are based in the 1989 PELs and the June, 1993 Air Contaminants Rule (Federal Register: 58: 35338-35351 and 58: 40191). Both the current PELs and the vacated PELs are indicated. The phrase, "Vacated 1989 PEL" is placed next to the PEL that was vacated by Court Order. **SKIN:** Used when a there is a danger of cutaneous absorption.

STEL: Short Term Exposure Limit, usually a 15-minute time-weighted average (TWA) exposure that should not be exceeded at any time during a workday, even if the 8-hr TWA is within the TLV-TWA, PEL-TWA or REL-TWA.

TLV: Threshold Limit Value. An airborne concentration of a substance that represents conditions under which it is generally believed that nearly all workers may be repeatedly exposed without adverse effect. The duration must be considered, including the 8-hour.

TWA: Time Weighted Average exposure concentration for a conventional 8-hr (TLV, PEL) or up to a 10-hr (REL) workday and a 40-hr workweek.

CAS #: This is the Chemical Abstract Service Number that uniquely identifies each HAZARDOUS MATERIALS IDENTIFICATION SYSTEM HAZARD

RATINGS: This rating system was developed by the National Paint and Coating Association and has been adopted by industry to identify the degree of chemical hazards. HEALTH HAZARD: 0 Minimal Hazard: No significant health risk, irritation of skin or eyes not anticipated. Skin Irritation: Essentially non-irritating. Mechanical irritation may occur. PII or Draize = 0. Eye Irritation: Essentially non-irritating, minimal effects clearing in < 24 hours. Mechanical irritation may occur. Draize = 0. Oral Toxicity LD $_{50}$ Rat. > 5000 mg/kg. Dermal Toxicity LD $_{50}$ Rat or Rabbit. > 2000 mg/kg. Inhalation Toxicity 4hrs LC₅₀ Rat. > 20 mg/L. 1 Slight Hazard: Minor reversible injury may occur; may irritate the stomach if swallowed; may defat the skin and exacerbate existing dermatitis. Skin Irritation: Slightly or mildly irritating. PII or Draize > 0 < 5. Eye Irritation: Slightly to mildly irritating, but reversible within 7 days. Draize > 0 \leq 25. Oral Toxicity LD_{50} Rat > 500–5000 mg/kg. Dermal Toxicity LD_{50} Rat or Rabbit. > 1000–2000 mg/kg. Inhalation Toxicity LC_{50} 4-hrs Rat > 2–20 mg/L. 2 Moderate Hazard: Temporary or transitory injury may occur; prolonged exposure may affect the CNS. Skin Irritation: Moderately irritating; primary irritant; sensitizer. PII or Draize ≥ 5, with no destruction of dermal tissue. Eye Irritation: Moderately to severely irritating; reversible corneal opacity; tissue. Eye Initiation: Moderately to severely linearity, reversible conteal involvement or irritation clearing in 8–21 days. Draize = 26–100, with reversible effects. Oral Toxicity LD_{50} Rat. > 50–500 mg/kg. Dermal Toxicity LD_{50} Rat or Rabbit. > 200–1000 mg/kg. Inhalation Toxicity LC_{50} 4-hrs Rat. > 0.5–2 mg/L. 3 Serious Hazard: Major injury likely unless prompt action is taken and medical treatment is given; high level of toxicity; corrosive. Skin Irritation: Severely irritating and/or corrosive; may cause destruction of dermal tissue, skin burns, and dermal necrosis. PII or Draize > 5-8, with destruction of tissue. Eye Irritation: Corrosive, irreversible destruction of ocular tissue; corneal involvement or irritation persisting for more than 21 days. Draize > 80 with effects irreversible in 21 days. Oral Toxicity LD50 Rat. > 1-50 mg/kg. Dermal Toxicity LD₅₀ Rat or Rabbit. > 20-200 mg/kg. Inhalation Toxicity LC₅₀ 4-hrs Rat. > 0.05-0.5 mg/L. 4 Severe Hazard: Life-threatening; major or permanent damage may result from single or repeated exposures; extremely toxic; irreversible injury may result from brief contact. Skin Irritation: Not appropriate. Do not rate as a 4, based on skin irritation alone. Eye Irritation: Not appropriate. Do not rate as a 4, based on eye irritation alone. Oral Toxicity LD₅₀ Rat. ≤ 1 mg/kg. Dermal Toxicity LD₅₀ Rat or Rabbit. ≤ 20 mg/kg. Inhalation Toxicity LC₅₀ 4-hrs Rat. ≤ 0.05 mg/L

FLAMMABILITY HAZARD: 0 Minimal Hazard: Materials that will not burn in air when exposure to a temperature of 815.5°C (1500°F) for a period of 5 minutes. 1 Slight <u>Hazard</u>: Materials that must be pre-heated before ignition can occur. Material requires considerable pre-heating, under all ambient temperature conditions before ignition and combustion can occur. This usually includes the following: Materials that will burn in air when exposed to a temperature of 815.5°C (1500°F) for a period of 5 minutes or less; Liquids, solids and semisolids having a flash point at or above 93.3°C (200°F) (i.e. OSHA Class IIIB); and Most ordinary combustible materials (e.g. wood, paper, etc.). 2 Moderate Hazard: Materials that must be moderately heated or exposed to relatively high ambient temperatures before ignition can occur. Materials in this degree would not, under normal conditions, form hazardous atmospheres in air, but under high ambient temperatures or moderate heating may release vapor in sufficient quantities to produce hazardous atmospheres with air. This usually includes the following: Liquids having a flash-point at or above 37.8°C (100°F); Solid materials in the form of course dusts that may burn rapidly but that generally do not form explosive atmospheres; Solid materials in a fibrous or shredded form that may burn rapidly and create flash fire hazards (e.g. cotton, sisal, hemp); and Solids and semisolids (e.g. viscous and slow flowing as asphalt) that readily give off flammable vapors. 3 Serious Hazard: Liquids and solids that can be ignited under almost all ambient temperature conditions. Materials in this degree produce hazardous atmospheres with air under almost all ambient temperatures, or, unaffected by ambient temperature, are readily ignited under almost all conditions. This usually includes the following: Liquids having a flash point below 22.8°C (73°F) and having a boiling point at or above 38°C (100°F) and those liquids having a flash point at or above 22.8°C (73°F) and below 37.8°C (100°F) (i.e. OSHA Class IB and IC); Materials that on account of their physical form or environmental conditions can form explosive mixtures with air and are readily dispersed in air (e.g., dusts of combustible solids, mists or droplets of flammable liquids); and Materials that burn extremely rapidly, usually by reason of self-contained oxygen (e.g. dry nitrocellulose and many organic peroxides). 4 Severe Hazard: Materials that will rapidly or completely vaporize at atmospheric pressure and normal ambient temperature or that are readily dispersed in air, and that will burn readily

DEFINITIONS OF TERMS (Continued)

RATINGS (continued):

FLAMMABILITY HAZARD (continued): 4 (continued: This usually includes the following: Flammable gases; Flammable cryogenic materials; Any liquid or gaseous material that is liquid while under pressure and has a flash point below 22.8°C (73°F) and a boiling point below 37.8°C (100°F) (i.e. OSHA Class IA); and Materials that ignite spontaneously when exposed to air at a temperature of 54.4°C (130°F) or below

PHYSICAL HAZARD: 0 Water Reactivity: Materials that do not react with water. Organic Peroxides: Materials that are normally stable, even under fire conditions and will not react with water. Explosives: Substances that are Non-Explosive. Compressed Gases: No Rating. Pyrophorics: No Rating. Oxidizers: No 0 rating. Unstable Reactives: Substances that will not polymerize, decompose, condense, or self-react.). 1 Water Reactivity: Materials that change or decompose upon exposure to moisture. Organic Peroxides: Materials that are normally stable, but can become unstable at high temperatures and pressures. These materials may react with water, but will not release energy violently. Explosives: Division 1.5 & 1.6 explosives. Substances that are very insensitive explosives or that do not have a mass explosion hazard. Compressed Gases: Pressure below OSHA definition. *Pyrophorics*: No Rating. *Oxidizers*: Packaging Group III oxidizers; Solids: any material that in either concentration tested, exhibits a mean burning time less than or equal to the mean burning time of a 3.7 potassium bromate/cellulose mixture and the criteria for Packing Group I and II are not met. Liquids: any material that exhibits a mean pressure rise time less than or equal to the pressure rise time of a 1:1 nitric acid (65%)/cellulose mixture and the criteria for Packing Group I and II are not met. Unstable Reactives: Substances that may decompose condense, or self-react, but only under conditions of high temperature and/or pressure and have little or no potential to cause significant heat generation or explosion hazard. Substances that readily undergo hazardous polymerization in the absence of inhibitors. 2 Water Reactivity: Materials that may react violently with water. Organic Peroxides: Materials that, in themselves, are normally unstable and will readily undergo violent chemical change, but will not detonate. These materials may also react violently with water. Explosives: Division 1.4 explosives. Explosive substances where the explosive effects are largely confined to the package and no projection of fragments of appreciable size or range are expected. An external fire must not cause virtually instantaneous explosion of almost the entire contents of the package. Compressed Gases: Pressurized and meet OSHA definition but < 514.7 psi absolute at 21.1°C (70°F) [500 psig]. Pyrophorics: No Rating. Oxidizers: Packing Group II oxidizers. Solids: any material that, either in concentration tested, exhibits a mean burning time of less than or equal to the mean burning time of a 2:3 potassium bromate/cellulose mixture and the criteria for Packing Group I are not met. Liquids: any material that exhibits a mean pressure rise time less than or equal to the pressure rise of a 1:1 aqueous sodium chlorate solution (40%)/cellulose mixture and the criteria for Packing Group I are not met. Reactives: Substances that may polymerize, decompose, condense, or self-react at ambient temperature and/or pressure, but have a low potential (or low risk) for significant heat generation or explosion. Substances that readily form peroxides upon exposure to air or oxygen at room temperature. 3 Water Reactivity: Materials that may form explosive reactions with water. Organic Peroxides: Materials that are capable of detonation or explosive reaction, but require a strong initiating source or must be heated under confinement before initiation; or materials that react explosively with water. Explosives: Division 1.3 explosives. Explosive substances that have a fire hazard and either a minor blast hazard or a minor projection hazard or both, but do not have a mass explosion hazard.

Compressed Gases: Pressure ≥ 514.7 psi absolute at 21.1°C (70°F) [500 psig]. Pyrophorics: No Rating. Oxidizers: Packing Group I oxidizers. Solids: any material that, in either concentration tested, exhibits a mean burning time less than the mean burning time of a 3:2 potassium bromate/cellulose mixture. Liquids: any material that spontaneously ignites when mixed with cellulose in a 1:1 ratio, or which exhibits a mean pressure rise time less than the pressure rise time of a 1:1 perchloric acid (50%)/cellulose mixture. Unstable Reactives: Substances that may polymerize, decompose, condense, or self-react at ambient temperature and/or pressure and have a moderate potential (or moderate risk) to cause significant heat generation or 4 Water Reactivity: Materials that react explosively with water without requiring heat or confinement. Organic Peroxides: Materials that are readily capable of detonation or explosive decomposition at normal temperature and pressures. Explosives: Division 1.1 & 1.2 explosives. Explosive substances that have a mass explosion hazard or have a projection hazard. A mass explosion is one that affects almost the entire load instantaneously. Compressed Gases: No Rating. Pyrophorics: Add to the definition of Flammability 4. Oxidizers: No 4 rating. Unstable Reactives: Substances that may polymerize, decompose, condense, or self-react at ambient temperature and/or pressure and have a high potential (or high risk) to cause significant heat generation or explosion

NATIONAL FIRE PROTECTION ASSOCIATION HAZARD RATINGS:

HEALTH HAZARD: 0 Materials that, under emergency conditions, would offer no hazard beyond that of ordinary combustible materials. Gases and vapors with an LC₅₀ for acute inhalation toxicity greater than 10,000 ppm. Dusts and mists with an LC50 for acute inhalation toxicity greater than 200 mg/L. Materials with an LD₅₀ for acute dermal toxicity greater than 2000 mg/kg. Materials with an LD_{50} for acute oral toxicity greater than 2000 mg/kg. Materials essentially non-irritating to the respiratory tract, eyes, and skin. 1 Materials that, under emergency conditions, can cause significant irritation. Gases and vapors with an LC₅₀ for acute inhalation toxicity greater than 5,000 ppm but less than or equal to 10,000 ppm. Dusts and mists with an LC50 for acute inhalation toxicity greater than 10 mg/L but less than or equal to 200 mg/L. Materials with an LD₅₀ for acute dermal toxicity greater than 1000 mg/kg but less than or equal to 2000 mg/kg. Materials that slightly to moderately irritate the respiratory tract, eyes and skin. Materials with an LD₅₀ for acute oral toxicity greater than 500 mg/kg but less than or equal to 2000 mg/kg. 2 Materials that, under emergency conditions, can cause temporary incapacitation or residual injury. Gases with an LC50 for acute inhalation toxicity greater than 3,000 ppm but less than or equal to 5,000 ppm. Any liquid whose saturated vapor concentration at 20°C (68°F) is equal to or greater than one-fifth its LC_{50} for acute inhalation toxicity, if its $L\dot{C}_{50}$ is less than or equal to 5000 ppm and that does not meet the criteria for either degree of hazard 3 or degree of hazard 4. Dusts and mists with an LC50 for acute inhalation toxicity greater than 2 mg/L but less than or equal to 10 mg/L.

HAZARDOUS MATERIALS IDENTIFICATION SYSTEM HAZARD NATIONAL FIRE PROTECTION ASSOCIATION HAZARD RATINGS (continued):

HEALTH HAZARD (continued): 2 (continued): Materials with an LD₅₀ for acute dermal toxicity greater than 200 mg/kg but less than or equal to 1000 mg/kg. Compressed liquefied gases with boiling points between -30°C (-22°F) and -55°C (-66.5°F) that cause severe tissue damage, depending on duration of exposure. Materials that are respiratory irritants. Materials that cause severe, but reversible irritation to the eyes or are lachrymators. Materials that are primary skin irritants or sensitizers. Materials whose LD₅₀ for acute oral toxicity is greater than 50 mg/kg but less than or equal to 500 mg/kg. 3 Materials that, under emergency conditions, can cause serious or permanent injury. Gases with an LC₅₀ for acute inhalation toxicity greater than 1,000 ppm but less than or equal to 3,000 ppm. Any liquid whose saturated vapor concentration at 20°C (68°F) is equal to or greater its LC50 for acute inhalation toxicity, if its LC50 is less than or equal to 3000 ppm and that does not meet the criteria for degree of hazard 4. Dusts and mists with an LC $_{50}$ for acute inhalation toxicity greater than 0.5 mg/L but less than or equal to 2 mg/L. Materials with an LD $_{50}$ for acute dermal toxicity greater than 40 mg/kg but less than or equal to 200 mg/kg. Materials that are corrosive to the respiratory tract. Materials that are corrosive to the eyes or cause irreversible corneal opacity. Materials corrosive to the skin. Cryogenic gases that cause frostbite and irreversible tissue damage. Compressed liquefied gases with boiling points below -55°C (-66.5°F) that cause frostbite and irreversible tissue damage. Materials with an LD $_{50}$ for acute oral toxicity greater than 5 mg/kg but less than or equal to 50 mg/kg. 4 Materials that, under emergency conditions, can be lethal. Gases with an LC50 for acute inhalation toxicity less than or equal to 1,000 ppm. Any liquid whose saturated vapor concentration at 20°C (68°F) is equal to or greater than ten times its LC₅₀ for acute inhalation toxicity, if its LC_{50} is less than or equal to 1000 ppm. Dusts and mists whose LC_{50} for acute inhalation toxicity is less than or equal to 0.5 mg/L. Materials whose LD_{50} for acute dermal toxicity is less than or equal to 40 mg/kg. Materials whose LD_{50} for acute oral toxicity is less than or equal to 5 mg/kg.

FLAMMABILITY HAZARD: 0 Materials that will not burn under typical fire conditions, including intrinsically noncombustible materials such as concrete, stone, and sand. Materials that will not burn in air when exposed to a temperature of 816°C (1500°F) for a period of 5 minutes in according with Annex D of NFPA 704. 1 Materials that must be preheated before ignition can occur. Materials in this degree require considerable preheating, under all ambient temperature conditions, before ignition and combustion can occur: Materials that will burn in air when exposed to a temperature of 816°C (1500°F) for a period of 5 minutes in according with Annex D of NFPA 704. Liquids, solids, and semisolids having a flash point at or above 93.4°C (200°F) (i.e. Class IIIB liquids). Liquids with a flash point greater than 35°C (95°F) that do not sustain combustion when tested using the Method of Testing for Sustained Combustibility, per 49 CFR 173, Appendix H or the UN Recommendations on the Transport of Dangerous Goods, Model Regulations (current edition) and the related Manual of Tests and Criteria (current edition). Liquids with a flash point greater than 35°C (95°F) in a water-miscible solution or dispersion with a water non-combustible liquid/solid content of more than 85% by weight. Liquids that have no fire point when tested by ASTM D 92, Standard Test Method for Flash and Fire Points by Cleveland Open Cup, up to the boiling point of the liquid or up to a temperature at which the sample being tested shows an obvious physical change. Combustible pellets with a representative diameter of greater than 2 mm (10 mesh). Most ordinary combustible materials. Solids containing greater than 0.5% by weight of a flammable or combustible solvent are rated by the closed cup flash point of the solvent. 2 Materials that must be moderately heated or exposed to relatively high ambient temperatures before ignition can occur. Materials in this degree would not under normal conditions form hazardous atmospheres with air, but under high ambient temperatures or under moderate heating could release vapor in sufficient quantities to produce hazardous atmospheres with air. Liquids having a flash point at or above 37.8°C (100°F) and below 93.4°C (200°F) (i.e. Class II and Class IIIA liquids.) Solid materials in the form of powders or coarse dusts of representative diameter between 420 microns (40 mesh) and 2 mm (10 mesh) that burn rapidly but that generally do not form explosive mixtures with air. Solid materials in fibrous or shredded form that burn rapidly and create flash fire hazards, such as cotton, sisal, and hemp. Solids and semisolids that readily give off flammable vapors. Solids containing greater than 0.5% by weight of a flammable or combustible solvent are rated by the closed cup flash point of the solvent. 3 Liquids and solids that can be ignited under almost all ambient temperature conditions. Materials in this degree produce hazardous atmospheres with air under almost all ambient temperatures or, though unaffected by ambient temperatures, are readily ignited under almost all conditions. Liquids having a flash point below 22.8°C (73°F) and having a boiling point at or above 37.8°C (100°F) and those liquids having a flash point at or above 22.8°C (73°F) and below 37.8°C (100°F) (i.e. Class IB and IC liquids). Materials that on account of their physical form or environmental conditions can form explosive mixtures with air and are readily dispersed in air. Flammable or combustible dusts with representative diameter less than 420 microns (40 mesh). Materials that burn with extreme rapidity, usually by reason of selfcontained oxygen (e.g. dry nitrocellulose and many organic peroxides). Solids containing greater than 0.5% by weight of a flammable or combustible solvent are rated by the closed cup flash point of the solvent. 4 Materials that will rapidly or completely vaporize at atmospheric pressure and normal ambient temperature or that are readily dispersed in air and will burn readily. Flammable gases. Flammable cryogenic materials. Any liquid or gaseous materials that is liquid while under pressure and has a flash point below 22.8°C (73°F) and a boiling point below 37.8°C (100°F) (i.e. Class IA liquids). Materials that ignite when exposed to air, Solids containing greater than 0.5% by weight of a flammable or combustible solvent are rated by the closed cup flash point of the solvent.

INSTABILITY HAZARD: 0 Materials that in themselves are normally stable, even under fire conditions. Materials that have an instantaneous power density (product of heat of reaction and reaction rate) at 250°C (482°F) below 0.01 W/mL. Materials that do not exhibit an exotherm at temperatures less than or equal to 500°C (932°F) when tested by differential scanning calorimetry. 1 Materials that in themselves are normally stable, but that can become unstable at elevated temperatures and pressures. Materials that have an instantaneous power density (product of heat of reaction and reaction rate) at 250°C (482°F) at or above 0.01 W/mL and below 10 W/mL

DEFINITIONS OF TERMS (Continued)

NATIONAL FIRE PROTECTION ASSOCIATION HAZARD RATINGS REPRODUCTIVE TOXICITY INFORMATION: (continued):

INSTABILITY HAZARD: 2 Materials that readily undergo violent chemical change at elevated temperatures and pressures. Materials that have an instantaneous power density (product of heat of reaction and reaction rate) at 250°C (482°F) at or above 10 W/mL and below 100W/mL. 3 Materials that in themselves are capable of detonation or explosive decomposition or explosive reaction, but that require a strong initiating source or that must be heated under confinement before initiation. Materials that have an estimated instantaneous power density (product of heat of reaction and reaction rate) at 250°C (482°F) at or above 100 W/mL and below 1000 W/mL. Materials that are sensitive to thermal or mechanical shock at elevated temperatures and pressures.4 Materials that in themselves are readily capable of detonation or explosive decomposition or explosive reaction at normal temperatures and pressures. Materials that are sensitive to localized thermal or mechanical shock at normal temperatures and pressures. Materials that have an estimated instantaneous power density (product of heat of reaction and reaction rate) at 250°C (482°F) of 1000 W/mL or greater

FLAMMABILITY LIMITS IN AIR:

Much of the information related to fire and explosion is derived from the National Fire Protection Association (NFPA). Flash Point: Minimum temperature at which a liquid gives off sufficient vapor to form an ignitable mixture with air near the surface of the liquid or within the test vessel used. Autoignition Temperature: Minimum temperature of a solid, liquid, or gas required to initiate or cause self-sustained combustion in air with no other source of ignition. <u>LEL</u>: Lowest concentration of a flammable vapor or gas/air mixture that will ignite and burn with a flame. <u>UEL</u>: Highest concentration of a flammable vapor or gas/air mixture that will ignite and burn with a flame.

TOXICOLOGICAL INFORMATION:

Human and Animal Toxicology: Possible health hazards as derived from human data, animal studies, or from the results of studies with similar compounds are presented. LD₅₀: Lethal Dose (solids & liquids) that kills 50% of the exposed animals. LC₅₀: Lethal Concentration (gases) that kills 50% of the exposed animals. ppm: Concentration expressed in parts of material per million parts of air or water. mg/m3 Concentration expressed in weight of substance per volume of air. mg/kg: Quantity of material, by weight, administered to a test subject, based on their body weight in kg. <u>TDLo</u>: Lowest dose to cause a symptom. <u>TCLo</u>: Lowest concentration to cause a symptom. <u>TDo</u>, <u>LDLo</u>, and <u>LDo</u>, or <u>TC</u>, <u>TCo</u>, <u>LCLo</u>, and <u>LCo</u>: Lowest dose (or concentration) to cause lethal or toxic effects. **Cancer Information:** <u>IARC</u>: International Agency for Research on Cancer. NTP: National Toxicology Program. RTECS: Registry of Toxic Effects of Chemical Substances. IARC and NTP rate chemicals on a scale of decreasing potential to cause human cancer with rankings from 1 to 4. Subrankings (2A, 2B, etc.) are also used. Other Information: BEI: ACGIH Biological Exposure Indices, represent the levels of determinants which are most likely to be observed in specimens collected from a healthy worker who has been exposed to chemicals to the same extent as a worker with inhalation exposure to the TLV

Mutagen: A chemical that causes permanent changes to genetic material (DNA) such that the changes will propagate through generation lines. Embryotoxin: A chemical that causes damage to a developing embryo (i.e., within the first eight weeks of pregnancy in humans), but the damage does not propagate across generational lines. Teratogen: A chemical that causes damage to a developing fetus, but the damage does not propagate across generational lines. Reproductive toxin: Any substance that interferes in any way with the

ECOLOGICAL INFORMATION:

EC: Effect concentration in water. BCF: Bioconcentration Factor, which is used to determine if a substance will concentrate in life forms that consume contaminated plant or animal matter. TLm: Median threshold limit. log Kow or log Koc: Coefficient of Oil/Water Distribution is used to assess a substance's behavior in the environment.

REGULATORY INFORMATION:

U.S. and CANADA:

This section explains the impact of various laws and regulations on the material. EPA: U.S. Environmental Protection Agency. ACGIH: American Conference of Governmental Industrial Hygienists, a professional association that establishes exposure limits. OSHA: U.S. Occupational Safety and Health Administration. NIOSH: National Institute of Occupational Safety and Health, which is the research arm of OSHA. WHMIS: Canadian Workplace Hazardous Materials Information System. <u>DOT</u>: U.S. <u>WARMS</u>: Of Transportation. <u>TC</u>: Transport Canada. <u>SARA</u>: Superfund Amendments and Reauthorization Act. <u>DSL/NDSL</u>: Canadian Domestic/Non-Domestic Substances List. TSCA: U.S. Toxic Substance Control Act. CERCLA: Comprehensive Environmental Response, Compensation, and Liability Act. Marine Pollutant status according to the DOT; CERCLA or Superfund; and various state regulations. This section also includes information on the precautionary warnings that appear on the material's package label. FUROPE:

EU: European Union (formerly known as the EEC, European Economic Community). EINECS: European Inventory of Now-Existing Chemical Substances. ARD: European Agreement Concerning the International Carriage of Dangerous Goods by Road. RID: International Regulations Concerning the Carriage of Dangerous Goods by Rail. AUSTRALIA:

AICS: Australian Inventory of Chemical Substances. NOHSC: National Occupational Health & Safety Code. JAPAN:

METI: Ministry of Economy, Trade and Industry.

