Genome-Wide Association for Late-Onset Alzheimer Disease (LOAD) Confirms Risk Locus on Chromosome 12

Gary W Beecham, PhD
Miami Institute of Human Genomics
University of Miami Miller School of Medicine
Miami, Florida

Outline

• Background and Genetics of LOAD
• Genome-Wide Association
• Imputation and Meta-Analysis
• Imputation Results
• Conclusions
Alzheimer Disease (AD)

- AD is the most common cause of dementia
 - Gradual decline in memory and cognitive ability, including language, problem solving and performance of everyday tasks
- Lifetime risk is 10-15% in the general population
- Prevalence doubles every five years after age 60
 - Approaching 50% in those age 85 & older
- Most (>90%) AD is late onset Alzheimer disease (LOAD; > 60 years)
- Occurs in multiple racial/ethnic groups
Risk Factors for AD

- Family history of AD
 - Strongest association in first degree relatives
 - 2-3 fold increase in risk
 - Higher with each additional relative
 - Heritability: 50%-80%

- Genetics
 - Four AD genes with major effects identified so far
 - APP, PS1, and PS2 are all associated with early-onset AD
 - Apolipoprotein E (APOE) is the only consistently associated LOAD risk gene

- Environmental (e.g., Education level, head trauma, etc.)
APOE and Alzheimer Disease

- Apolipoprotein E (APOE) is the only LOAD risk gene with consistently observed associations
- APOE accounts for at most 50% of the genetic effect
- E4 carries greater risk of LOAD and earlier age of onset
 - 0 copies of E4: ~20% risk of AD, Average age-of-onset: 86
 - 1 copy of E4: ~40% risk of AD, Average age-of-onset: 78
 - 2 copies of E4: ~85% risk of AD, Average age-of-onset: 74
Many Candidate Genes in AD

- All shown have at least one positive association
- Apolipoprotein E (APOE) on chromosome 19 only one consistently replicated
Outline

• Background and Genetics of LOAD
• Genome-Wide Association
• Imputation and Meta-Analysis
• Imputation Results
• Conclusions
Genome-Wide Association Study

• We performed a GWAS to discover disease risk genes for LOAD
 – Increased coverage relative to candidate gene approach
 – Increased resolution and power relative to linkage studies
Methods- Discovery GWAS

• Case Definition/Diagnosis
 – LOAD affected samples meet NINCDS/ADRDA criteria for probable or definite AD, with AAO > 60
 – Controls had no signs of dementia by history and upon interview (MMSE > 26 or 3MS > 86)

• Ascertainment
 – Samples from the Collaborative Alzheimer Project (MIHG and CHGR)
 – 1049 samples (518 case, 531 control) were genotyped

• Genotyping: Illumina Infinium II Assay
 – Using Illumina Beadstation, 550HH Beadchip, & BeadStudio
 – Genotyping efficiency > 99%
 – CEPH controls genotyped multiple times
Quality Control - Discovery GWAS

Sample QC

1049 Samples

31 EFF < 0.98
17 GC < 0.90
9 Gender Incon
3 Relatedness
1 Clinical
0 Pop Substruct

988 Samples

492 cases
498 controls

Marker QC

N=555,352

20,670 MAF < 0.005
1,092 HWE < 1 x 10^-6
797 EFF < 0.90
202 Location

N=532,591

Average MAF: 0.246
Average SNP Efficiency: 99.83%
Association - Discovery GWAS

- Cochrane-Armitage trend test (df = 1)
- Logistic regression, adjusting for:
 - APOE status (# of APOE e4 alleles)
 - Age at Onset (AAO)/Age at Exam (AAE)
 - Gender

- Top results compared with consensus linkage regions
Results - Discovery GWAS

- Departure of P-values from Expectation (QQ Plot)

Excluding top 3 associations in/near APOE on Chr 19
Results-
Discovery GWAS

Whole Genome Association, top p-values

APOE

Chromosome
Results-
Discovery GWAS

- Chr 19: APOE Confirmed
- Associations observed under previously observed linkage peaks
Top Non-APOE Hit- rs11610206

- SNP rs11610206 is top hit outside of APOE SNPs
 - $P = 1.43 \times 10^{-6}$ (genome-wide significance)
 - MAF = 0.085
 - Efficiency 100%
 - HWD p-value = 0.64
 - Located at 45.9 Mb, Chromosome 12

- Why is it of interest?
 - Lies under the linkage signals from several studies (independent datasets)
 - Near biological candidate VDR (Vitamin D Receptor) with positive associations in multiple association studies
 - Significant differences in expression of VDR between AD cases and controls (Xu, 2007)
Chromosome 12 Linkage Region

VDR
SENP1
Amigo2

Linkage curve from Liang et al, 2006
Outline

• Background and Genetics of LOAD
• Genome-Wide Association
 • Imputation and Meta-Analysis
• Imputation Results
• Conclusions
Imputation of SNPs in GWAS

● What is SNP imputation?
 – Use recombination pattern information in a dense genotype map to impute genotypes in untyped SNPs in a less dense genotype map
 – E.g., use HapMap genotypes and known LD patterns to infer genotypes for SNPs that are not in the Illumina 550k HumanHap

● Several Advantages
 – More powerful than tagging
 • Tagging approaches test only single SNPs or small haplotypes of SNPs on a genotyping chip,
 – Provides increased resolution
 – Can be used as a multi-point test
 – **Facilitates meta-analysis**
 • Allows datasets collected with different genotyping chips to be combined for increased power
How Does Imputation Work?

- Estimate the probability of an unobserved genotype given the observed genotypes and a genetic model
 - Model provided by the reference haplotypes and recombination map
 - Genotypes consistent with local LD patterns are considered more likely
 - Marker information decreases with genetic distance (no need to set sliding windows, select SNP# etc to define haplotypes)
 - Estimated using a Hidden Markov Model (HMM)
Using IMPUTE for Imputation

Overview of Imputation using IMPUTE

Fine-scale Recombination Map (-m file)
Panel of Haplotypes i.e. HapMap (-h file + -i file)
Sample Genotypes (-g file)

A Type 1 SNP
A Type 2 SNP
A Type 3 SNP

Type 1 SNP: in haplotypes file only
Type 2 SNP: in haplotypes and genotypes file
Type 3 SNP: in genotypes file only

Imputed Genotypes (-o file + -i file)

The above figure over-simplifies what IMPUTE does. The output for each genotype is a probability distribution on genotypes i.e.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.01</td>
<td>0.18</td>
<td>0.81</td>
</tr>
</tbody>
</table>

This captures the uncertainty in the prediction.

http://www.stats.ox.ac.uk/~marchini/software/gwas/impute.html
Benefits of Imputation

- Accurate (based on imputation of known genotypes from WTCCC data)
- Can fill in missing data
- Can improve coverage in genomic regions

Table 1. Estimates of Genomic Coverage for Currently Available Genome-wide SNP Platforms Alone and after Imputation

<table>
<thead>
<tr>
<th>Platform</th>
<th>% Genomic Coverage at $r^2 \geq 0.8$</th>
<th>% Genomic Coverage at $r^2 = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affymetrix SNP Array 5.0</td>
<td>65</td>
<td>43</td>
</tr>
<tr>
<td>Affymetrix SNP Array 5.0 plus imputed SNPs</td>
<td>73</td>
<td>54</td>
</tr>
<tr>
<td>Affymetrix SNP Array 6.0</td>
<td>80</td>
<td>59</td>
</tr>
<tr>
<td>Illumina HumanHap 300</td>
<td>77</td>
<td>42</td>
</tr>
<tr>
<td>Illumina HumanHap 300 plus imputed SNPs</td>
<td>81</td>
<td>50</td>
</tr>
<tr>
<td>Illumina HumanHap 550</td>
<td>87</td>
<td>57</td>
</tr>
<tr>
<td>Illumina HumanHap 1M</td>
<td>91</td>
<td>68</td>
</tr>
</tbody>
</table>
Limitations to Imputation

- **Potential Problems**
 - Assumes LD structure is the same between reference and sample
 - Potential sampling error for reference
 - Studies suggest it is robust against misspecification
 - Cases *SHOULD* be different in a region of association
 - Assumes uniform mutation rate, no insertions/deletions, similar recombination rates between reference and sample
 - Potential bias in missing data problems
- **Multiple Testing- generating >2 million SNP genotypes**
- **Coverage**
 - When combining datasets, if SNPs on two different platforms are too far apart, none of the intermediate SNPs will be imputed with confidence
 - Any signal in the low coverage area is not found
Imputation in the LOAD GWAS

• Data was acquired from a previous GWAS on LOAD cases and controls that used Affy 500K (Reiman et al. 2007)
 – Partial overlap with Illumina 550K panel
 – For all cases and controls, imputed 2.5 million SNPs identified in the HapMap CEU trios

• Implemented two strategies:
 – 1) Examining/comparing the strongest associations from both studies ($P < 0.0001$)
 – 2) Examining nominally associated markers within candidate genes ($P < 0.05$)

Reiman et al., Neuron 2007 Jun 7;54(5):713-20
Outline

• Background and Genetics of LOAD
• Genome-Wide Association
• Imputation and Meta-Analysis
• Imputation Results
• Conclusions
Results--
Imputed Data

Whole Genome Association, top pvalues

-\log_{10}(p-value) vs. Chromosome
Results - Imputed Data

- Chr 19 hits
- Chr 1 hit in DISC1

- Chr 5- rs10474567 (78.1MB; not near known candidates)
- Chr 19- at ZNF224 near APOE; peak association $\sim 10^{-6}$
- Chr 6- rs3807031 et al. (30.2MB; not in known genes; near HLA region)
Joint Analysis with Reiman GWAS

- Jointly analyzed discovery dataset with 550K (Affy) GWAS dataset examined in Reiman et al. (2007)

- Several associations observed in both studies & joint analyses

<table>
<thead>
<tr>
<th>SNPs</th>
<th>CHR:BP</th>
<th>Type</th>
<th>Original</th>
<th>Reiman</th>
<th>Joint</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs12044355</td>
<td>1:229910970</td>
<td>R</td>
<td>3.90E-05</td>
<td>0.008216</td>
<td>9.20E-06</td>
</tr>
<tr>
<td>rs142596</td>
<td>4:138508340</td>
<td>R</td>
<td>3.90E-05</td>
<td>0.01052</td>
<td>1.25E-05</td>
</tr>
<tr>
<td>rs4416533</td>
<td>19:49305501</td>
<td>B</td>
<td>6.19E-05</td>
<td>0.03786</td>
<td>4.91E-06</td>
</tr>
<tr>
<td>rs13213247</td>
<td>6:81572755</td>
<td>I</td>
<td>0.01745</td>
<td>2.51E-05</td>
<td>1.51E-06</td>
</tr>
</tbody>
</table>

SNPs in/near ZNF224

Intronic SNP of AD candidate DISC1

Reiman et al., *Neuron* 2007 Jun 7;54(5):713-20
Associations at prior candidates

- Identified candidate genes with prior associations from the Alzheimer Research Forum AlzGene database*

- Nine candidate gene demonstrated nominally significant associations ($P<0.05$) of SNPs in each GWAS and in joint analyses
 - P between 0.003-0.05 in individual analysis
 - P between 0.0001-0.01 in joint analysis

* http://www.alzforum.org/res/com/gen/alzgene/
Joint Analysis with Reiman GWAS

- Nine AD candidate genes in AlzGene Compendium* showed associations in both datasets and joint analyses
 - ADAM12
 - CSF1
 - GBP2
 - KCNMA1
 - NOS2A
 - SORCS2
 - SORCS3
 - SORL1
 - WWC1

 GBP2 (guanylate-binding protein 2)
 - upregulated in hippocampus; has shown previous association
 - Related to SORL1:
 - SORCS2 (sortilin-related VPS10 domain containing receptor 2)
 - SORCS3 (sortilin-related VPS10 domain containing receptor 3)
 - WWC1 (WW and C2 containing domain 1)
 - previous association in Spanish population; associated with memory performance based on a task

 Reiman et al., Neuron
 2007 Jun 7;54(5):713-20

* http://www.alzforum.org/res/com/gen/alzgene/
GWAS Imputation Findings

- Strong associations were observed on Chr 19 for SNPs in ZNF224 (P from Joint = $1.51 \times 10^{-6} - 4.91 \times 10^{-6}$)

- Nine candidate genes previously associated with AD were observed to have SNPs with nominal associations ($P<0.05$) in both GWAS datasets and in the joint analysis
Outline

- Background and Genetics of LOAD
- Genome-Wide Association
- Imputation and Meta-Analysis
- Imputation Results
- Conclusions
Conclusions

• *APOE* associations observed in discovery GWAS dataset

• Most significant SNP association outside of *APOE*: rs11610206 on 12q13
 – Near the VDR gene, a biological candidate gene with multiple positive associations and supporting expression data

• These results provide evidence for an Alzheimer disease risk locus on 12q13
Conclusions

- Imputation is an efficient approach to using existing genotype data and patterns of linkage disequilibrium on each chromosome to infer genotypes at untyped SNPs in GWAS.

- Application of imputation identified a strong associations on Chr 1, 4, 6, and 19.

- Nine candidate genes previously associated with AD were observed to have SNPs with nominal associations ($P<0.05$) in both GWAS datasets and in the joint analysis.
Acknowledgements

- AD patients and their families for participating in the study
- Clinical and Research staff of the Miami Institute for Human Genomics
 - Adam Naj
 - Margaret Pericak-Vance
 - Jonathan Haines
 - John Gilbert
 - Stephan Zuchner
 - Patrice Whitehead
 - Odette Gordon
 - Kenju Hara
 - Eden Martin
 - Paul Gallins
 - Monica Polk
 - Karen DeSombre
 - Robin Toft
 - Doris Caldwell

- This work was supported by grants from
 - The Alzheimer Association (ZEN-01-2935, IIRG-00-2006)
 - The National Institutes of Health (NIA and NINDS) (AG021547 and AG19757)
 - NCRAD is supported by a cooperative agreement grant (U24AG21886) from the National Institute of Aging