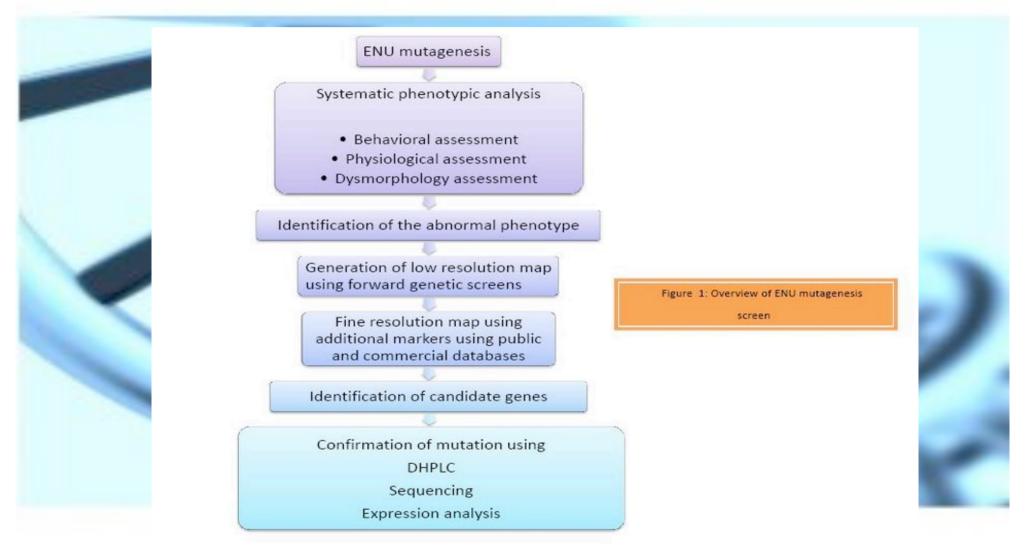


Animal Models for Human Disease

Dr. Jörg Hager

Understanding gene function through ENU mutagenesis



- ENU, (*N-ethyl-N-nitrosourea* ($C_3H_7N_3O_2$)), is a highly potent mutagen.
- ENU induces about 1point-mutation every 1 to 2 megabases.
- ENU targets spermatogonial stem cells
- ENU induced mutations include loss-offunction as well as gain-of-function mutations.

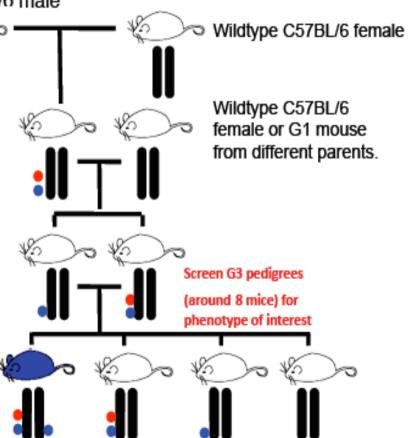
Classical Workflow for ENU mutant screen

Adapted from: Hans Hedrich (editor). The Laboratory Mouse, Elsevier Academic Press. ISBN 0-12-336425-6

ENU Mutagenesis

G0: ENU treated C57BI /6 male

ENU treatment induces random base substitutions in spermatogonial stem cells.


each carries ~3000 nucleotide changes spread randomly across paternal chromosomes

G2 progeny:

Sequence variants segregate.

G3 progeny:

~185 sequence variants brought to homozygosity in each mouse



Courtesy of: Anselm Enders, ANU

Breeding scheme for positional cloning

Adapted from: Hans Hedrich (editor). The Laboratory Mouse, Elsevier Academic Press. ISBN 0-12-336425-6

Positional cloning necessitates large scale animal breeding

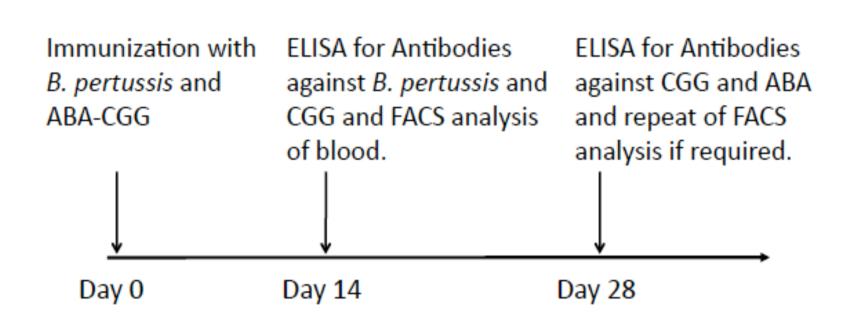
	TABLE 4.6: Selected examples of positional cloning works in the mouse							
	Mutation	Symbol	Gene	Meiosis	Reference			
-			A Total All Commences					
	Brachyury	T	T	a	Herrmann et al., 1990			
	short ear	se	Bmp5	a	Kingsley et al., 1992			
	obese	ob	Lep	1606	Zhang et al., 1994			
	natural resistance to infection	Bcg/Lsh/Ity	Slc11a1	1000 ^b	Vidal et al., 1995			
	tottering	tg	Cacna1a	2800	Fletcher et al., 1996			
	tubby	tub	tub	1232	Kleyn et al., 1996			
	clock	Clock	Clock	2400	King et al., 1997			
	vibrator	vb	Pitpn	2600	Hamilton et al., 1997			
	Lurcher	Lc	Grid2	504	Zuo et al., 1997			
	syndactylism	sm	Jag2	5766	Sidow et al., 1997			
	pudgy	pu	DII3	2264	Kusumi et al., 1998			
	shaker-2	sh2	Myo15	500 ^b	Probst et al., 1998			
	shaker-2	sh2	Myo15	1305	Wakabayashi et al., 1998			
	Dactylaplasia	Dac	Fbxw4	7182	Sidow et al., 1999			
	mahogany	mg	Atrn	2437	Nagle et al., 1999			
	mahogany	mg	Atrn	1727	Gunn et al., 1999			
	progressive ankylosis	ank	ank	1846	Ho et al., 2000			
	fidget	fi	Fign	2400	Cox et al., 2000			
	dreher	dr	Lmx1a	738	Millonig et al., 2000			
	fatty liver dystrophy	fld	Lpin1	706	Peterfy et al., 2000			
	flexed-tail	f	Sfxn1	1000	Fleming et al., 2001			
	cytomegalovirus resistance 1	Cmv1	Klra8	1967	S.H. Lee et al., 2001			
	Loop tail	Lp	Ltap	753	Kibar et al., 2001			
	waltzer	v	Cdh23	3830 ^b	Di Palma et al., 2001			
	Waltzer	v	Cdh23	1648	Wada et al., 2001			
	hypolipidemia	hypl	Angptl3	3344	Koishi et al., 2001			

Adapted from: Hans Hedrich (editor). The Laboratory Mouse, Elsevier Academic Press. ISBN 0-12-336425-6

ENU Mutagenesis: Shortcut through sequencing

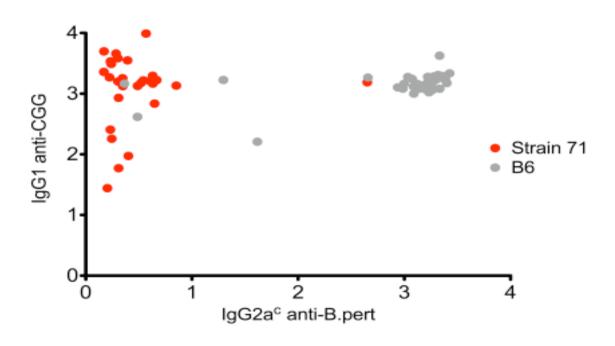
Infection and Immunity Genomics Consortium (IIGC)

Collaboration between the Australian National University (ANU) and CNG


Scope of the project:

- generate a library of new ENU mutants with defects affecting autoimmunity, vaccination and immunity to tuberculosis infection
- develop ways to refine phenotype screens and accelerate the identification of mutations.

Immunization and FACS screen

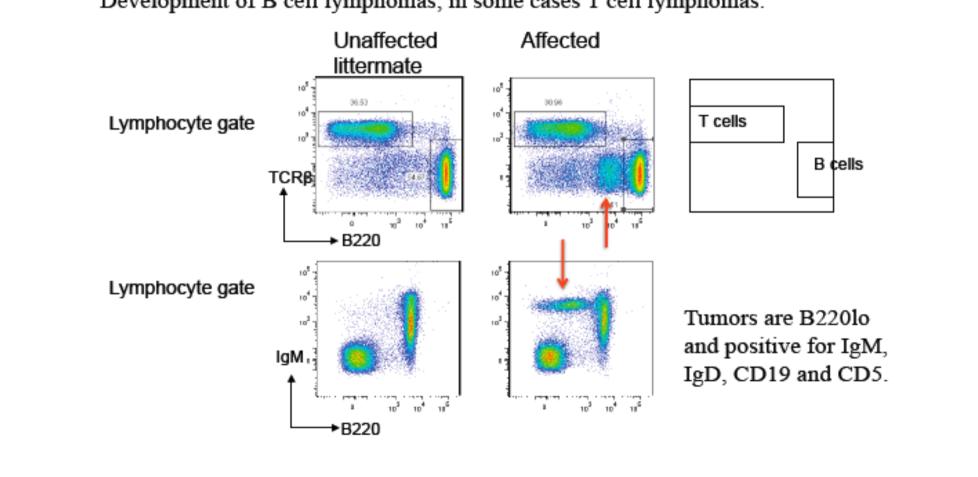


B. pertussis induces a Th1-dependent response CGG induces a Th2-dependent result The response to the hapten arsonate requires a germinal centre reaction.

Immunization screen: Example 1 ENU7B6 71

Phenotype:

Low Th1-dependent antibody response to *Bordetella pertussis* but good response to chicken Y-globulin.

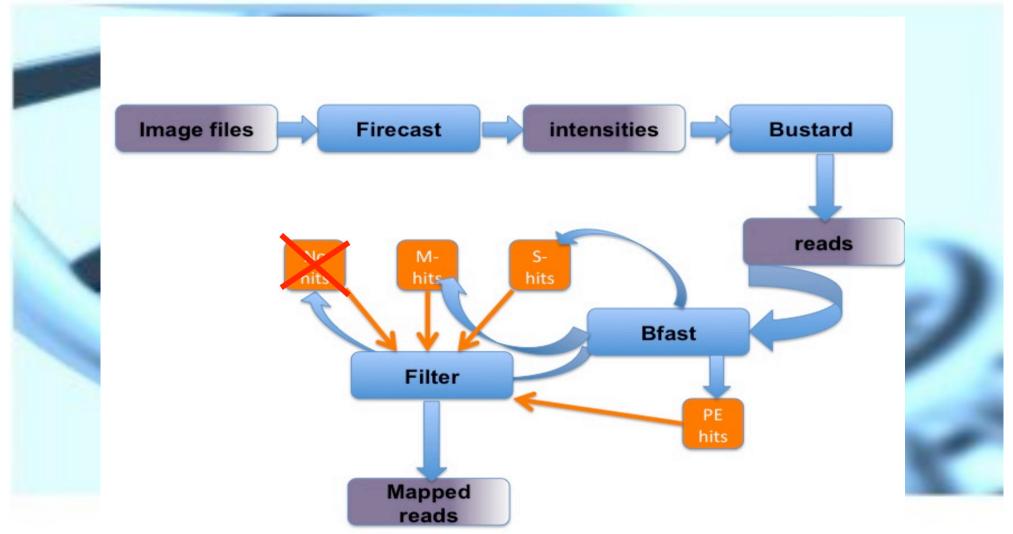

No abnormalities in the development of T or B cells detected.

Immunization screen: Example 2 ENU6WTNIH33 CN

Phenotype:

Development of B cell lymphomas, in some cases T cell lymphomas.

Identification of mutations by HT sequencing

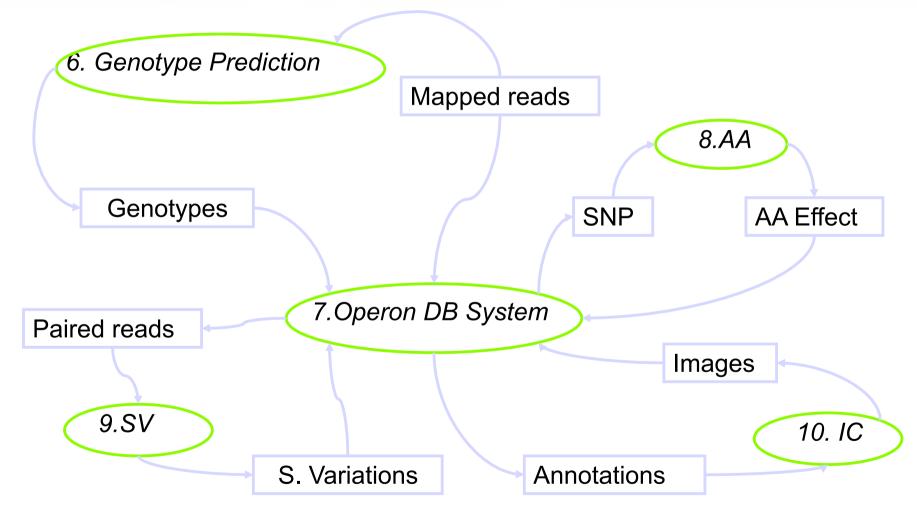


- Strategy:
 - Whole-genome sequencing;
 - 6-8x coverage for homozygous individuals of G3 individuals carrying the phenotype of interest;
 - Illumina GA paired-end sequencing (~50 Gbases/ flow cell = 1 flow-cell per mouse genome;

CNG Sequencing Pipeline

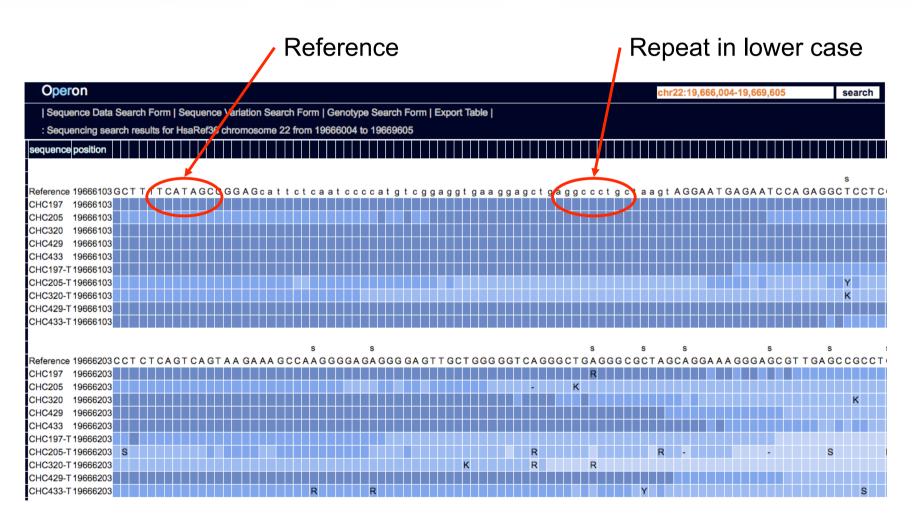
Schema courtesy of Mario Foglio, CNG

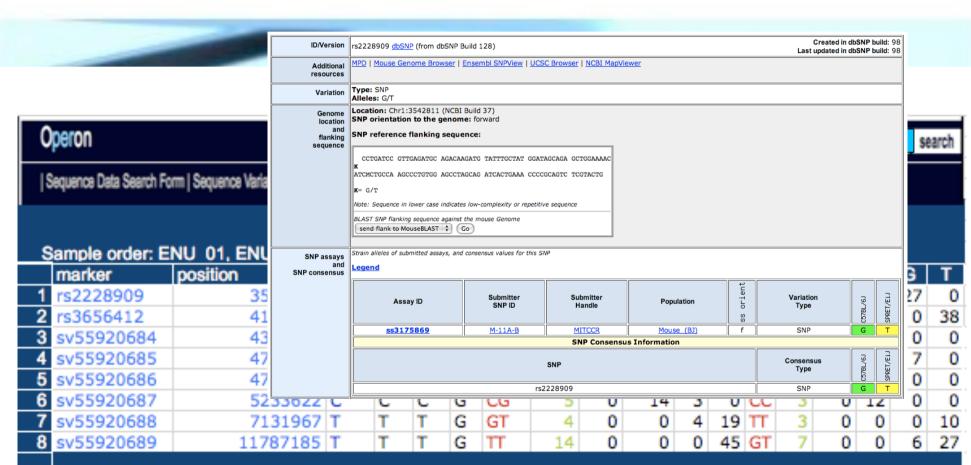
WG Sequence from two ENU mouse strains

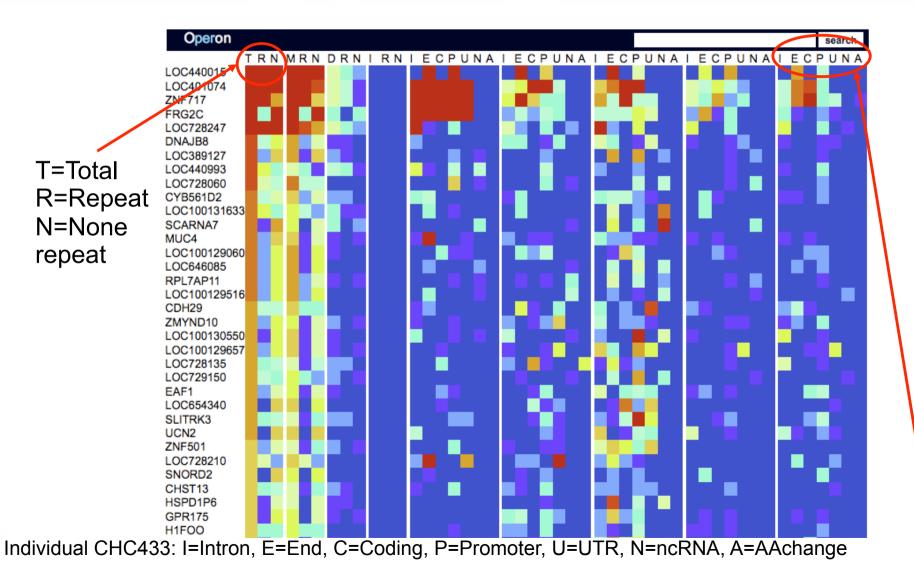


Runs	FC Name	Etat du run	YIELD (kb)	insert size th (pl	insert size seen	cycles					
CFT0											
Run 1 (4 lanes)	4304JAAXX	Analysé	13,589,390	417	288	152					
Run 2 (3 lanes)	430BDAAXX	Analysé	4,935,989	400	NA	76					
SOMME			18,525,379	25,379 ~7x coverage							
CFT1											
Run 1 (3 lanes)	4304JAAXX	Analysé	9,725,222	424	293	152					
Run 2 (4 lanes)	430BDAAXX	Analysé	6,220,970	400	NA	76					
Run 3 (4 lanes)	431BLAAXX	Analysé	13,598,404	400	294	152					
SOMME			29,544,596	~11x coverage							

Workflow: Genotyping aligned sequences




Visualizing aligned sequence quality


Identification of sequence variants in Operon

Identification of gene variants

Advantages of WG sequencing of ENU mutants

Traditional ENU screen

- Labor/time intensive intercrosses/backcrosses
- Careful choice of strain for intercross
- •Needs sometimes large number (>100) animals for positional cloning
- Long, costly positional cloning (linkage study, candidate gene sequencing)

WG Sequence assisted ENU screen

- Can be carried out directly on
 G2 (dominant) or G3 (recessive)
 mice
- Can be carried out on same strain background
- Few animals are needed
- Directly provides candidate genes/mutations within weeks
- Facilitates identification of double hits

Conclusions/Outlook

- ENU mouse models can help understand gene function by providing phenotypes due to point mutations, even in cases where ko models are lethal.
- The combination of ENU mouse models models with new sequencing technology can accelerate the identification of the phenotype causing mutations from months/years to weeks.
- As most ENU mutations inducing phenotypic changes are exonic, exon capture prior to sequencing could further decrease complexity of the analysis.

Acknowledgements:

ANU collaborators

Anselm Enders

Chris Goodnow

CNG colleagues

Marie-Therese Bihoreau

Yannis Duffourd

Mario Foglio

Diana Zelenika

Mark Lathrop

Thank You for **Your Attention**