Uncovering the genetic foundations of production, reproduction, and health

Helping plant and animal breeders and researchers identify desirable traits

Commercial Agriculture

The application of genomics in commercial agriculture, such as genotyping for trait screening, has become indispensable to modern farming and breeding practices. Our microarray and next-generation sequencing (NGS) technologies are helping breeders and researchers evaluate and predict genetic merit in plants and animals, informing crucial decisions about selection and health.

The Value of Genomics in Agriculture

Genetic information has largely replaced physical screening for many commercial agriculture applications, including selective breeding. Genetic markers linked to specific value traits can be used to screen large numbers of progeny to identify those with desired characteristics. Trait screening is ideal for multigenic traits that are difficult to manage using conventional breeding or propagation techniques, and even more difficult to identify phenotypically. Iterative screening of populations enables easier segregation of progeny possessing the desired traits for use as breeding stock. Illumina offers a comprehensive portfolio for both microarray- and sequencing-based solutions to help researchers screen herds and crops for desired traits.

Genomic Selection and Commercial Agriculture

Next-generation sequencing and genotyping technologies are revolutionizing animal breeding.

Access PDF

The goal of backcrossing is to move a single trait of interest—such as drought tolerance, high productivity, or disease resistance—from a donor parent to progeny. Marker-assisted backcrossing using Illumina microarrays or NGS enables researchers to monitor the transmission of the trait gene via a genetically linked marker that can be easily screened. This process significantly accelerates backcrossing programs and reduces the time to release of commercially viable plant lines or breeding stock.

Marker-Assisted Backcrossing

Animal identity verification and parentage are essential tools in maintaining the biosecurity of the world’s animal populations. Illumina genotyping platforms offer the speed, reliability, and throughput needed to track animals from birth, with the flexibility to perform iterative testing as necessary. The high throughput offered by genotyping is especially valuable for commercial agriculture applications that require large-scale production.

Traceability

The recent emergence of novel infectious diseases in animal populations has required researchers to look beyond conventional diagnostic tests for ways to identify these new pathogens. The speed and affordability of NGS has fueled the field of metagenomics, enabling investigators to screen samples, detect infectious agents rapidly, and track disease outbreaks. Illumina NGS technology is quickly becoming a vital tool for microbial analysis and veterinary applications.

Tracking Foodborne Pathogens with NGS

The MiSeq System helps this lab perform agri-food pathogen testing and epidemiology efficiently.

Read Interview

Genetic markers can be used to identify animals and understand the relationship of offspring to parents. Because a single marker may not yield definitive results, multiple markers are used to increase the probability of identifying the true parent. In linebreeding situations where multiple generations of males or females are present in the herd, the marker results are combined with the breeder’s knowledge of possible sires or dams to determine parentage.

TruSeq Bovine Parentage Sequencing Panel

This panel enables parentage testing of multiple beef and dairy cattle breeds, with added genotyping of relevant traits in a single assay.

Learn More

Molecular characterization of genetically modified organisms (GMO) is necessary for event selection and, in many countries, regulatory approval. The simplicity and consistency of NGS makes this method a superior alternative to the existing process of Southern blotting and sequencing of PCR products.

Deep sequencing of the whole genome allows determination of the number of insert sites, copy numbers at each site, sequence of the insert and the native site, and generational stability.

GMO Characterization
Interested in receiving newsletters, case studies, and information on agrigenomics? Enter your email address.
Bringing a Better Steak to Texas
Bringing a Better Steak to Texas

Genetic selection tools based on the BovineSNP50 BeadChip array enable 44 Farms to ensure Angus beef quality from farm to table.

Read Interview
High-Density Genotyping Aids Livestock Improvement
High-Density Genotyping Aids Livestock Improvement

Zoetis uses Illumina BeadChips to enable livestock producers to improve the genetic makeup of their herds.

Read Interview
Modern Breeding Programs for the Sunflower
Modern Breeding Programs for the Sunflower

The sunflower industry adopts genomics tools to better inform breeding decisions and improve disease resistance.

Read Interview
Genomic Selection in Agriculture
Genomic Selection in Agriculture

An overview of recent publications in agrigenomics featuring Illumina technology.

Access PDF
Polyploid Clustering
Polyploid Clustering

Our GenomeStudio software supports genotyping data analysis of polyploid organisms such as wheat and potato.

Learn More
Identify Complex Microbial Populations
Identify Complex Microbial Populations

Get genus-level identification using high-speed, multiplexed 16S amplicon sequencing.

Access PDF
Selective Breeding of Goat Herd
Selective Breeding of Goat Herd

AgResearch uses genotyping by sequencing to overcome cost barriers associated with genomic selection in minor livestock species.

Read Interview