Next-generation sequencing (NGS) is a massively parallel sequencing technology that offers ultra-high throughput, scalability, and speed. The technology is used to determine the order of nucleotides in entire genomes or targeted regions of DNA or RNA. NGS has revolutionized the biological sciences, allowing labs to perform a wide variety of applications and study biological systems at a level never before possible.
Today's complex genomics questions demand a depth of information beyond the capacity of traditional DNA sequencing technologies. NGS has filled that gap and become an everyday tool to address these questions.
We'll guide you through the basics of NGS, with tutorials and tips for planning your first experiment.
Get StartedNext-generation sequencing technology has fundamentally changed the kinds of questions scientists can ask and answer. Innovative sample preparation and data analysis options enable a broad range of applications. For example, NGS allows labs to:
Using capillary electrophoresis-based Sanger sequencing, the Human Genome Project took over 10 years and cost nearly $3 billion.
Next-generation sequencing, in contrast, makes large-scale whole-genome sequencing (WGS) accessible and practical for the average researcher. It enables scientists to analyze the entire human genome in a single sequencing experiment, or sequence thousands to tens of thousands of genomes in one year.
Explore user-friendly tools designed to make data analysis accessible to any scientist, regardless of bioinformatics experience.
NGS-based RNA-Seq is a powerful method that enables researchers to break through the inefficiency and expense of legacy technologies such as microarrays. Microarray gene expression measurement is limited by noise at the low end and signal saturation at the high end.
In contrast, next-gen sequencing quantifies discrete, digital sequencing read counts, offering a broader dynamic range.1,2,3
Targeted sequencing allows you to sequence a subset of genes or specific genomic regions of interest, efficiently and cost-effectively focusing the power of NGS. NGS is highly scalable, allowing you to tune the level of resolution to meet experimental needs. Choose whether to do a shallow scan across multiple samples, or sequence at greater depth with fewer samples to find rare variants in a given region.
Learn more about:
promo
Illumina NGS technology utilizes a fundamentally different approach from the classic Sanger chain-termination method. It leverages sequencing by synthesis (SBS) technology – tracking the addition of labeled nucleotides as the DNA chain is copied – in a massively parallel fashion.
Next-generation sequencing generates masses of DNA sequencing data, and is both less expensive and less time-consuming than traditional Sanger sequencing.2 Illumina sequencing systems can deliver data output ranging from 300 kilobases up to multiple terabases in a single run, depending on instrument type and configuration.
Recent Illumina next-generation sequencing technology breakthroughs include:
Personalized medicine programs can help match patients to treatments based on their genetic blueprints and improve survival rates, quality of life, and the cost of care.
This detailed overview of Illumina sequencing describes the evolution of genomic science, major advances in sequencing technology, key methods, the basics of Illumina sequencing chemistry, and more.
Read IntroductionSee how researchers in different fields utilize next-generation sequencing to make breakthrough discoveries.
This UK-wide study uses NGS to compare the genomes of severely and mildly ill COVID-19 patients, to help uncover genetic factors associated with susceptibility.
Read ArticleScientists use single-cell NGS techniques to study cancer microenvironments, elucidate gene expression patterns, and gain insights into drug resistance and metastasis.
Read ArticleThis research highlights the broad potential of circulating cell-free RNA sequencing for biomarker discovery and noninvasive health monitoring.
Read ArticleThe resources below offer valuable guidance to scientists who are considering purchasing a next-generation sequencing system.
Learn about read length, coverage, quality scores, and other experimental considerations to help you plan your sequencing run.
Use our interactive tools to help you create a custom NGS protocol or select the right products and methods for your project.
Next-generation sequencing is uniquely positioned in an infectious disease surveillance and outbreak model. Learn which NGS methods are recommended for detecting and characterizing SARS-CoV-2 and other respiratory pathogens, tracking transmission, studying co-infection, and investigating viral evolution.
Explore Coronavirus NGS MethodsExperts agree that next-generation sequencing is the best weapon for comprehensively tracking multi-drug-resistant TB
Read ArticleDeveloping and automating workflows for analyzing, processing, and sharing genomic data among researchers and clinicians.
Read InterviewA new exome-based test will help determine the genetic variants—germline and somatic—driving these rare cancers
Read Article