Illumina next-generation sequencing (NGS) technology uses clonal amplification and sequencing by synthesis (SBS) chemistry to enable rapid, accurate sequencing. The process simultaneously identifies DNA bases while incorporating them into a nucleic acid chain. Each base emits a unique fluorescent signal as it is added to the growing strand, which is used to determine the order of the DNA sequence.
NGS technology can be used to sequence the DNA from any organism, providing valuable information in response to almost any biological question. A highly scalable technology, DNA sequencing can be applied to small, targeted regions or the entire genome through a variety of methods, enabling researchers to investigate and better understand health and disease.
Compare the speed and throughput of Illumina DNA sequencing systems to find the best option for your lab.
Whole-genome sequencing is the most comprehensive method for analyzing the genome. Rapidly dropping sequencing costs and the ability to obtain valuable information about the entire genetic code make this method a powerful research tool.
Learn MoreWith targeted resequencing, a subset of genes or regions of the genome are isolated and sequenced, allowing researchers to focus time, expenses, and analysis on specific areas of interest.
Learn MoreBy combining chromatin immunoprecipitation (ChIP) assays and sequencing, ChIP sequencing (ChIP-Seq) is a powerful method to identify genome-wide DNA binding sites for transcription factors and other proteins.
Learn MoreOur versatile library prep portfolio allows you to examine small, targeted regions or the entire genome. We've innovated in PCR-free and on-bead fragmentation technology, offering time savings, flexibility, and increased sequencing data performance.
Learn MoreThis collection of peer-reviewed publications contains pros and cons, schematic protocol diagrams, and related references for various DNA sequencing methods.
Access PDFNGS-based sequencing methods allow cancer researchers to detect rare somatic variants, perform tumor-normal comparisons, and analyze circulating DNA fragments. Learn more about cancer sequencing.
Sequencing- and array-based genotyping technologies can provide insight into the functional consequences of genetic variation. Learn more about genotyping.
Cell-free DNA (cfDNA) are short fragments of DNA released into the bloodstream. cfDNA from a maternal blood sample can be used to screen for common chromosomal conditions in the fetus. Learn more about cell-free DNA technology.
Analysis of microbial species using DNA sequencing can inform environmental metagenomics studies, infectious disease surveillance, molecular epidemiology, and more. Learn more about microbial sequencing methods.
NGS has become an everyday research tool used to address today’s complex biological questions.
Find intuitive analysis tools that transform raw DNA sequencing data into meaningful results.
These short videos provide expert tips for issues such as overclustering, inconsistent quantitation, and sequencing through the insert.