Genomic tools to detect and analyze copy number variants

Copy Number Variation Analysis

Copy number variations (CNVs) are genomic alterations that result in an abnormal number of copies of one or more genes. Structural genomic rearrangements such as duplications, deletions, translocations, and inversions can cause CNVs.

Like single-nucleotide polymorphisms (SNPs), certain CNVs have been associated with disease susceptibility. Illumina offers a variety of array and next-generation sequencing (NGS) solutions for high-resolution copy number analysis.

Copy Number Variations

Genome-wide genotyping arrays are commonly used to detect genetic variants, including CNVs that contribute to diseases and phenotypes. Array-based approaches for copy number analysis offer reliable, efficient methods for large-scale analysis.

Researchers can process multiple samples on a single microarray for broad surveys of genomic structural variation, and accurately profile chromosomal aberrations such as amplifications, deletions, rearrangements, and copy-neutral loss of heterozygosity.

Array-Based CNV Analysis

Illumina offers both human and non-human genotyping arrays for CNV analysis. Illumina scientists strategically select the markers on the arrays to provide maximum genome coverage for optimal copy number analysis.

Cytogenomic research arrays

Arrays for cytogenomic research, which are specifically validated for CNV analysis as part of the manufacturing process.

Learn More
Human genotyping arrays

Unbiased, non-targeted approach for human variant detection, providing high coverage across the human genome.

Learn More
Non-human genotyping arrays

Comprehensive suite of array-based kits for genotyping non-human species such as crops, livestock, and model organisms.

Learn More
Custom genotyping arrays

Design custom or semi-custom arrays for any species, with convenient online tools and Illumina expert assistance.

Learn More

While efficient for large CNV detection, genotyping arrays are less sensitive for detecting CNVs smaller than 50 kilobases. By providing a base-by-base view of the genome, NGS detects small or novel CNVs that arrays often miss.

NGS can also map the exact location of a CNV. The high resolution of sequencing complements the high throughput of arrays, enabling a complete view of the genome.

TruSeq PCR-Free Library Prep Kit

Identify the greatest number of variants and sequence challenging regions. View Kit.

TruSeq Nano Library Prep Kit

Efficiently interrogate samples with limited available DNA, with high coverage quality and reduced bias. View Kit.

Isaac Whole-Genome Sequencing BaseSpace App

Analyze whole-genome sequencing data using fast and accurate Isaac algorithms for alignment and variant calling. View App.

Copy number variation often alters gene expression. Targeted RNA sequencing (RNA-Seq) is an unbiased approach for analyzing and quantifying transcripts of interest. RNA-Seq can capture subtle gene expression changes, measure allele-specific expression, and detect fusion genes. By characterizing the downstream effects of variants, researchers can better understand the molecular mechanisms of disease. Learn more about targeted RNA-Seq.

NGS Shows CNV Impact on Gene Expression

Researchers use targeted RNA-Seq to uncover how a CNV linked to schizophrenia affects gene expression in the brain.

Read Interview
Cytogenomics
Cytogenomics

Illumina offers microarrays designed to detect chromosome aberrations and provide accurate cytogenomic data. NGS may be used to confirm copy number variants detected by arrays. Learn more about cytogenomics.

Cancer Chromosome Abnormalities
Cancer Chromosome Abnormalities

Sequencing- and array-based technologies offer complementary approaches for studying chromosomal rearrangements, CNVs, and other abnormalities in cancer samples. Learn more about cancer chromosomal abnormality studies.

Causal Variant Discovery
Causal Variant Discovery

Genotyping with arrays and NGS can help researchers identify causative variants, including CNVs, associated with complex diseases. Learn more about causal variant discovery.

Preimplantation Genetic Diagnosis
Preimplantation Genetic Diagnosis

Illumina offers solutions for rapid preimplantation genetic diagnosis (PGD) of single-gene disorders and balanced chromosomal translocations in IVF embryos. Learn more about PGD.

Interested in receiving newsletters, case studies, and information on sequencing methods? Enter your email address.
System for NGS and Cytogenomic Arrays
System for NGS and Cytogenomic Arrays

Perform sequencing and high-quality cytogenomic array scanning all on a single platform, the NextSeq 550 System.

View System
Chromosomal Genetics Studies with Arrays & NGS
Chromosomal Genetics Studies

Researchers adopt NGS and array technologies to analyze chromosomal abnormalities and their connection to disease.

Read Interview
CNV Array Data Analysis Basics
CNV Array Data Analysis Training

Learn how to analyze CNV data from Infinium genotyping arrays.

Access Course